基于低品位天然凹凸棒石黏土的低成本蜂窝陶瓷 |
作者:薛爱莲,范兆如,毛恒洋,周守勇,李梅生,赵宜江 |
单位: 淮阴师范学院化学化工学院,江苏省环境功能材料工程实验室,江苏省生物质能与酶技术重点实验室,江苏 淮安223300 |
关键词: 凹凸棒石黏土;氧化铝;蜂窝陶瓷;挤出成型法;烧结 |
出版年,卷(期):页码: 2021,41(6):35-42 |
摘要: |
低品位凹凸棒石黏土由于凹凸棒石含量低,被大量弃用,造成资源浪费,迫切需要开发基于低品位凹凸棒石黏土的功能材料,以提高其利用效率和价值。本文以低品位凹凸棒石黏土为主要原料,采用挤出成型法制备了表面光滑无缺陷的凹凸棒石蜂窝陶瓷坯体,经焙烧后获得凹凸棒石黏土-氧化铝蜂窝陶瓷成品。考察了水、粘结剂和增塑剂的加入量以及焙烧制度等对蜂窝陶瓷性能的影响。研究表明,当水含量在17.5-20.0 %、粘结剂含量为8-10 %、增塑剂含量为3-4 %时,经真空练泥及陈腐后,获得的泥料具有优异的塑性,挤出成型能力最好,在挤出成型过程中蜂窝陶瓷生坯结构完整、无缺陷。经合适的焙烧温度和保温时间焙烧后,所得蜂窝陶瓷壁厚约0.34 mm、孔密度为169 孔/in2、孔隙率为43.43±0.12 %、吸水率为25.98±0.1 %、体积密度为0.9±0.12 g/cm3、机械强度为16.34±1.23MPa。 |
Honeycomb ceramics with regular, parallel channels have high mechanical strength, good thermal shock resistance, high specific surface area and good permeability. The performance of the honeycomb ceramics largely depends on the material and formation process. Low-grade attapulgite clay (LATP) is a natural, non-metallic mineral preferred for its abundance, low cost, inert property and low sintering temperature. In this study, honeycomb ceramics were prepared by extrusion molding and sintering of LATP and alumina. Carbon powder was used for making pores, methyl cellulose for binding, boric acid for sintering, while glycerol and liquid paraffin for plasticizing and lubrication, respectively. Plasticity of the mud was best when the content of water, binder and plasticizer were 17.5-20.0 wt.%, 8-10 wt.% and 3-4 wt.%, respectively. This produced excellent extrusion and subsequently, honeycomb ceramic green with no defects. After sintering at 700 °C for 3 h, the thickness of the walls and pore density were about 0.34 mm and 169 holes/in2, respectively. Open porosity, water absorption, volume density and mechanical strength was 43.43±0.1 %, 25.98±0.1 %, 0.9±0.1 g/cm3, 16.34±1.23 MPa, respectively. Honeycomb ceramics provided a new way for the application of low-grade attapulgite clay. |
薛爱莲(1977-),女,江苏淮安人,博士,副教授,主要从事先进膜材料与过程研究,E-mail:ailian1977@hytc.edu.cn. |
参考文献: |
[1] S. K. Hubadillah, Z. Harun, M. H. D. Othman, et al, Preparation and characterization of low cost porous ceramic membrane support from kaolin using phase inversion/sintering technique for gas separation: effect of kaolin content and non-solvent coagulant bath[J], Chem. Eng. Res. Des. 112 (2016) 24-35. [2] A. Ben, N. Hamdi, M. A. Rodriguez, Preparation and characterization of new ceramic membranes for ultrafiltration[J], Ceram. Int. 44 (2018) 2328-2335. [3] 李贵佳,刘小鱼, 用于汽车尾气净化的SiC蜂窝陶瓷[J], 中国陶瓷, 8(2014):4-7. [4] J. G. Yu, X. Y. Li, Z. H Xu, et al, NaOH-modified ceramic honeycomb with enhanced formaldehyde adsorption and removal performance[J], Environ. Sci. Technol. 47 (2013) 9928-9933. [5] Z. L. Gao, Y. Q. Liu, Z. Q. Gao, Outer wall heat transfer of heat exchanger embedded in honeycomb ceramic packed bed under condition of steam flow medium[J], Energy Metall. Ind. 37 (2018) 29-32. [6] Z. L. Gao, Y. Q. Liu, Z. Q. Gao, Influence of packed honeycomb ceramic on heat extraction rate of packed bed embedded heat exchanger and heat transfer modes in heat transfer process[J], Int. Commun. Heat Mass. 65 (2015) 76-81. [7] W. D. Oh, J. X. Lei, A. Veksha, et al, Influence of surface morphology on the performance of nanostructured ZnO-loaded ceramic honeycomb for syngas desulfurization[J], Fuel 211 (2018) 591-599. [8] A. J. Koivisto, K. I. Kling, A. S. Fonseca, Dip coating of air purifier ceramic honeycombs with photocatalytic TiO2 nanoparticles: A case study for occupational exposure[J], Sci. Total Environ. 630 (2018) 1283-1291. [9] L. H. Nie, Y. Q. Zheng, J. G. Yu, Efficient decomposition of formaldehyde at room temperature over Pt/honeycomb ceramics with ultra-low Pt content[J], Dalton T. 43 (2014) 12935-12942. [10] Frank Händle. Extrusion in Ceramic[M], Springer 2007. [11] B. Fotoohi, S. Blackburn, Study of phase transformation and microstructure in sintering of mechanically activated cordierite precursors[J], J. Am. Ceram. Soc. 95 (2012) 2640-2646. [12] F. Han, Z. X. Zhong, Y. Yang, et al, High gas permeability of SiC porous ceramics reinforced by mullite fibers[J], J. Eur. Ceram. Soc. 36 (2016) 3909-3917. [13] X. Z. Guo, X. B. Cai, L. Zhu., et al, Preparation and properties of SiC honeycomb ceramics by pressureless sintering technology[J], J. Adv. Ceram. 3 (2014) 83-88. [14] N. Ma, L. J. Du, W. T. Liu, et al, Synthesis of honeycomb-like structured porous Si3N4 ceramics with exceptionally high number of cells per square inch[J], Mater. Lett. 175 (2016) 152-156. [15] J. H. Wang, H. Zhang, X. Y. Meng, et al, Promotion of the alginate gelling method for preparing Al2O3 honeycomb ceramics[J], Adv. Appl. Ceram. 116 (2017) 1-5. [16] T. T. Xu, C. A. Wang, Effect of two-step sintering on micro-honeycomb BaTiO3 ceramics prepared by freeze-casting process[J], J. Eur. Ceram. Soc. 36 (2016) 2647-2652. [17] S. L. Feng, F. P. He, J. D. Ye, Fabrication and characterization of honeycomb β-tricalcium phosphate scaffolds through an extrusion technique[J], Ceram. Int. 43 (2017) 6778-6785. [18] M. Elbadawi, M. Shbeh, High strength yttria-reinforced HA scaffolds fabricated via honeycomb ceramic extrusion[J], J. Mech. Behav. Biomed. 77 (2018) 422-433. [19] D. W. Zhuang, H. B. Dai, Y. J. Zhong, et al, A new reactivation method towards deactivation of honeycomb ceramic monolith supported cobalt-molybdenum-boron catalyst in hydrolysis of sodium borohydride[J], Int. J. Hydrogen Energ. 2015, 40 (2015) 9373-9381. [20] C. Wang, F. Yu, M. Y. Zhu, et al, Microspherical MnO2-CeO2-Al2O3 mixed oxide for monolithic honeycomb catalyst and application in selective catalytic reduction of NOx with NH3 at 50-150?°C[J], Chem. Eng. J. 346 (2018) 182-192. [21] M. Ahrouch, J. M. Gatica, K. Draoui, et al, Lead removal from aqueous solution by means of integral natural clays honeycomb monoliths[J], J Hazard. Mater. 365 (2018) 519-530. [22] J. M. Gatica, H. Vidal, Non-cordierite clay-based structured materials for environmental applications[J], J. Hazard. Mater. 181 (2010) 9-18. [23] M. P. Yeste, J. M. Gatica, M. Ahrouch, et al, Clay honeycomb monoliths as low cost CO2 adsorbents[J], J. Taiwan Inst. Chem. E. 80 (2017) 415-423. [24] J. Xu, W. B. Wang, A. Q. Wang, Dispersion of palygorskite in ethanol-water mixtures via high-pressure homogenization: Microstructure and colloidal properties[J], Powder Technol. 261 (2014) 98-104. [25] S. Y. Zhou, A. L. Xue, Y. Zhang, et al, Preparation of a new ceramic microfiltration membrane with a separation layer of attapulgite nanofibers[J], Mater. Lett. 143 (2015) 27-30. [26] J. Ji, S. Y. Zhou, C. Y. Lai, et al, PVDF/palygorskite composite ultrafiltration membranes with enhanced abrasion resistance and flux[J], J. Membr. Sci. 495 (2015) 91-100. [27] J. J. Cai, S. Y. Zhou, Y. J. Zhao, et al, Enhanced hydrophilicity of a thermo-responsive PVDF/Palygorskite-g- PNIPAAM hybrid ultrafiltration membrane via surface segregation induced by temperature[J], RSC. Adv. 6 (2016) 62186-62192. [28] D. Y. Wei, S. Y. Zhou, M. S. Li, et al, PVDF/palygorskite composite ultrafiltration membranes: Effects of nano-clay particles on membrane structure and properties[J], Appl. Clay Sci. 181 (2019) 105171. [29] Y. S. Xu, L. L. Zhang, M. H. Yin, et al, Ultrathin g-C3N4 films supported on attapulgite nanofibers with enhanced photocatalytic performance[J], Appl. Surf. Sci. 440 (2018) 170-176. [30] H. G. Zhang, X. Z. Li, H. Su, Sol-gel synthesis of up conversion perovskite/attapulgite hetero structures for photocatalytic fixation of nitrogen[J], J. Sol-Gel Sci. Techn. 92 (2019) 154-162. [31] S. Y. Zhou, A. L. Xue, Y. Zhang, et al, Novel polyamidoamine dendrimer-functionalized palygorskite adsorbents with high adsorption capacity for Pb2+ and reactive dyes[J], Appl. Clay. Sci. 107 (2015) 220-229. [32] Y. Lan, D. Chen. The effects of carbonization conditions on electrochemical performance of attapulgite-based anode material for lithium-ion batteries[J], J. Mater. Sci. Mater. Electron. 30 (2019) 10342–10351. [33] X. F. Liang, N. Li, L.Z. He, et al, Inhibition of Cd accumulation in winter wheat (Triticum aestivum L.) grown in alkaline soil using mercapto-modified attapulgite[J], Sci. Total Enviro. 688 (2019) 818-826. [34] W. D. Liang, R. Wang, C. J. Wang, et al, Facile preparation of attapulgite‐based aerogels with excellent flame retardancy and better thermal insulation properties[J], J. Appl. Polym. Sci. 136 (2019) 47849. [35] F. Han, Z. X. Zhong, Y. Yang, et al, High gas permeability of SiC porous ceramics reinforced by mullite fibers[J], J. Eur. Ceram, 36 (2016) 3909-3916. [36] Y. Yang, W. B. Xu, F. Zhang, et al, Preparation of highly stable porous SiC membrane supports with enhanced air purification performance by recycling NaA zeolite residue[J], J. Membr. Sci. 541 (2017) 500-509. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号