纳米SiO2修饰陶瓷中空纤维制备MCM-48分子筛膜 |
作者:谢继贤,任生缘,周诗健,王学瑞,顾学红 |
单位: 南京工业大学化工学院 材料化学工程国家重点实验室 化工学院,江苏 南京 211816 |
关键词: MCM-48;中空纤维;介孔分子筛;气体分离膜 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2021,41(6):43-50 |
摘要: |
采用擦涂纳米SiO2颗粒的方法,修饰四通道α-Al2O3中空纤维载体表面,实现了高性能MCM-48分子筛膜的可控制备。通过对比不同修饰方法,发现擦涂纳米SiO2颗粒能有效降低载体的表面粗糙度,同时避免了因内渗带来的载体传质阻力增加。经过两次水热合成,纳米SiO2修饰中空纤维制备MCM-48分子筛膜厚度为3 µm,脱除模板剂前N2渗透性为4.17×10-11 mol·m-2·s-1·Pa-1,表明膜层较为致密。脱除模板剂后,0.2 bar下MCM-48分子筛膜的H2渗透性为4.82×10-7 mol·m-2·s-1·Pa-1,H2/N2理想选择性为3.60;努森扩散对于H2渗透性的贡献为99.69%,符合努森扩散占主导的分离机理。等摩尔H2/N2双组分的分离选择性(2.90)低于理想选择性。孔度渗透实验表明膜平均孔径为2.94 nm,略大于MCM-48本征孔道尺寸。 |
High selective mesoporous MCM-48 membranes were prepared on four-channel α-Al2O3 hollow fiber with an average pore size of 400 nm. Prior to hydrothermal synthesis, different approaches were used to modify the hollow fibers. The results showed that the nano-sized SiO2 particles were effectively coated on the support surface, reducing the roughness without significant decrease of the gas permeation. The membrane synthesis was optimized based on the hollow fibers modified by rubbing nano-sized SiO2 particles. After twice hydrothermal synthesis, a dense membrane with thickness of 3 µm was obtained. Because of the template accommodation, N2 permeance of the as-synthesized membrane was as low as 4.17×10-11 mol·m-2·s-1·Pa-1. After removing the template, the H2 permeance reached 4.82×10-7 mol·m-2·s-1·Pa-1 and the ideal H2/N2 selectivity was 3.60. The H2 permeation was dominated by the MCM-48 pores, wherein 99.69% H2 permeance was contributed by Knudsen diffusion. The equimolar H2/N2 mixture selectivity (2.90) was lower than the ideal selectivity. The average pore size of the membrane was determined to be 2.94 nm by permporometry, which was slightly larger than the intrinsic pore size of MCM-48 (2.38 nm). |
基金项目: |
国家自然科学基金重点项目(22035002); 国家自然科学基金青年基金(21908097); 江苏省特聘教授计划; 江苏省“333人才工程“; 江苏省研究生科研与实践创新计划项目(SJCX20-0362). |
作者简介: |
谢继贤(1997-),男,山东济宁,硕士生,主要研究方向为膜分离,E-mail:xiejixian@njtech.edu.cn. |
参考文献: |
Kosinov N, Auffret C, Borghuis G J, et al. Influence of the Si/Al ratio on the separation properties of SSZ-13 zeolite membranes [J]. J Membr Sci, 2015, 484: 140-145. [2] Wang L, Zhang C, Gao X C, et al. Preparation of defect-free DDR zeolite membranes by eliminating template with ozone at low temperature [J]. J Membr Sci, 2017, 539: 152-160. [3] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J Am Chem Soc, 1992, 114(27): 10834-10843. [4] Nishiyama N, Koide A, Egashira Y, et al. Mesoporous MCM-48 membrane synthesized on a porous stainless steel support [J]. ChemComm, 1998, (19): 2147-2148. [5] Nishiyama N, Park D H, Koide A, et al. A mesoporous silica (MCM-48) membrane: Preparation and characterization [J]. J Membr Sci, 2001, 182(1-2): 235-244. [6] Park D H, Nishiyama N, Egashira Y, et al. Enhancement of hydrothermal stability and hydrophobicity of a silica MCM-48 membrane by silylation [J]. Ind Eng Chem Res, 2001, 40(26): 6105-6110. [7] Nishiyama N, Park D-H, Egashira Y, et al. Pore size distributions of silylated mesoporous silica MCM-48 membranes [J]. Sep Purif Technol, 2003, 32(1): 127-132. [8] Nishiyama N, Saputra H, Park D H, et al. Zirconium-containing mesoporous silica Zr-MCM-48 for alkali resistant filtration membranes [J]. J Membr Sci, 2003, 218(1-2): 165-171. [9] de la Iglesia O, Pedernera M, Mallada R, et al. Synthesis and characterization of MCM-48 tubular membranes [J]. J Membr Sci, 2006, 280(1-2): 867-875. [10] Pedernera M, de la Iglesia O, Mallada R, et al. Preparation of stable MCM-48 tubular membranes [J]. J Membr Sci, 2009, 326(1): 137-144. [11] Liu C Y, Wang L Q, Ren W Z, et al. Synthesis and characterization of a mesoporous silica (MCM-48) membrane on a large-pore α-Al2O3 ceramic tube [J]. Micropor Mesopor Mater, 2007, 106: 35-39. [12] Xu D K, Fan Y Q. Mesoporous Si-MCM-48 membrane prepared by pore-filling method [J]. Sci China Technol Sci, 2010, 53(4): 1064-1068. [13] 王晓磊, 张玉亭, 高冰, et al. 四通道中空纤维NaA分子筛内膜的制备与表征 [J]. 无机材料学报, 2018, 33(003): 339-344. [14] 陈川, 张春, 江兴惠, et al. 四通道中空纤维丝光沸石膜的制备与表征 [J]. 膜科学与技术, 2018, 38(05): 15-22. [15] Jiang J, Wang L, Peng L, et al. Preparation and characterization of high performance CHA zeolite membranes from clear solution [J]. J Membr Sci, 2017, 527: 51-59. [16] Liu H, Gao X, Wang S, et al. SSZ-13 zeolite membranes on four-channel α-Al2O3 hollow fibers for CO2 separation [J]. Sep Purif Technol, 2021, 267: 118-127. [17] 蔡超, 张玉亭, 王晓磊, et al. SiO2掺杂对四通道氧化铝中空纤维结构与性能的影响 [J]. 膜科学与技术, 2017, 37(001): 1-7. [18] Kosinov N, Auffret C, Sripathi V G P, et al. Influence of support morphology on the detemplation and permeation of ZSM-5 and SSZ-13 zeolite membranes [J]. Micropor Mesopor Mater, 2014, 197: 268-277. [19] Shi Z, Zhang Y, Cai C, et al. Preparation and characterization of α-Al2O3 hollow fiber membranes with four-channel configuration [J]. Ceram Int, 2015, 41(1): 1333-1339. [20] Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range [J]. J Colloid Interface Sci, 1968, 26(1): 62-69. [21] Wu S F, Yang J H, Lu J M, et al. Synthesis of thin and compact mesoporous MCM-48 membrane on vacuum-coated α-Al2O3 tube [J]. J Membr Sci, 2008, 319(1): 231-237. [22] Ji H, Fan Y Q, Jin W Q, et al. Synthesis of Si-MCM-48 membrane by solvent extraction of the surfactant template [J]. J Non-Cryst Solids, 2008, 354(18): 2010-2016. [23] 洪周. MFI分子筛膜的孔道调变及其分离性能研究 [D]; 南京工业大学, 2013. [24] Wang C, Liu X F, Cui R L, et al. In situ evaluation of defect size distribution for supported zeolite membranes [J]. J Membr Sci, 2009, 330(1): 259-266. [25] Kim H-J, Jang K-S, Galebach P, et al. Seeded growth, silylation, and organic/water separation properties of MCM-48 membranes [J]. J Membr Sci, 2013, 427: 293-302. [26] Zhu J, Fan Y Q, Xu N P. Modified dip-coating method for preparation of pinhole-free ceramic membranes [J]. J Membr Sci, 2011, 367(1): 14-20. [27] 李小霞, 江云波, 张克铮. 溶胶-凝胶法制备二氧化硅无机膜的工艺研究 [J]. 石油化工高等学校学报, 2010, 23(002): 34-36. [28] Hua Z L, Shi J L, Wang L, et al. Preparation of mesoporous silica films on a glass slide: surfactant template removal by solvent extraction [J]. J Non-Cryst Solids, 2001, 292(1): 177-183. [29] Martin J, Anderson M, Odinek J, et al. Synthesis of periodic mesoporous silica thin films [J]. Langmuir, 1997, 13(15): 4133-4141. [30] Liu C Y, Wang J Q, Rong Z H. Mesoporous MCM-48 silica membrane synthesized on a large-pore α-Al2O3 ceramic tube [J]. J Membr Sci, 2007, 287(1): 6-8. [31] Lin Y S, Burggraaf A J. Preparation and characterization of high-temperature thermally stable alumina composite membrane [J]. J Am Ceram Soc, 1991, 1540: 16-289. [32] 冯嘉美. 气体分子在纳米通道中的输运扩散研究 [D]; 暨南大学, 2018. [33] Tsuru T, Hino T, Yoshioka T, et al. Permporometry characterization of microporous ceramic membranes [J]. J Membr Sci, 2001, 186(2): 257-265. [34] Schumacher K, Ravikovitch P I, Du Chesne A, et al. Characterization of MCM-48 materials [J]. Langmuir, 2000, 16(10): 4648-4654. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号