亲水超滤膜PVDF/CS-HDH-Cl的制备及其抗菌性能研究 |
作者:徐佳峰,王函,陈艳,郎万中 |
单位: 上海师范大学 教育部资源化学重点实验室,化学与材料科学学院,上海200234 |
关键词: 聚偏氟乙烯膜;卤胺;壳聚糖;抗菌膜 |
DOI号: |
分类号: TQ31 |
出版年,卷(期):页码: 2021,41(6):103-109 |
摘要: |
以壳聚糖和海因为原料合成了壳聚糖-海因(CS-HDH),并通过氯化处理得到氯化壳聚糖-海因(CS-HDH-Cl),以合成的CS-HDH-Cl为添加剂制备具有亲水性、抗污染性能和抑菌性能的聚偏氟乙烯(PVDF)膜。结果表明,添加CS-HDH-Cl改善PVDF膜的亲水性能,随着添加剂质量分数增加至0.9%,渗透通量高达351.2 L?m-2?h-1;改性后的PVDF/CS-HDH-Cl膜通量恢复率可达90.9%;当氧化态氯含量达0.69 mmol?g-1,PVDF/CS-HDH-Cl超滤膜对大肠杆菌和金黄色葡萄球菌的抑菌率分别为98.7%和98.9%。 |
CS-HDH was simply synthesized by chitosan and hine, and then CS-HDH-Cl was finally obtained by chlorination. Polyvinylidene fluoride (PVDF) membranes prepared by adding CS-HDH-Cl have good advantages of hydrophilic, anti-pollution and antibacterial properties. The results showed that the addition of CS-HDH-Cl improved the hydrophilicity of PVDF membranes. With the addition of CS-HDH-Cl mass increased to 0.9 %, the permeation flux was up to 351.2 L?m-2?h-1. Flux recovery rate(FRR) of PVDF/CS-HDH-Cl membrane could achieves 90.9%. When the oxidative chlorine content increased to 0.69 mmol?g-1, M-4 showed the utmost sterilization ratios of 98.7% and 98.9% against E.coli and S.aureus, respectively. |
基金项目: |
上海绿色能源化工工程技术研究中心(18DZ2254200) |
作者简介: |
徐佳峰(1998-),女,硕士研究生,主要从事膜分离技术研究,E-mail:xjf101408@163.com |
参考文献: |
[1] Yuliwati E, Ismail A F. Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment[J]. Desalination, 2011, 273(1): 226-234. [2] Rahimpour A, Madaeni S S, Amirinejad M, et al. The effect of heat treatment of PES and PVDF ultrafiltration membranes on morphology and performance for milk filtration[J]. Journal of Membrane Science, 2009, 330(1–2): 189-204. [3] 康标. 抗菌抗污染有机超滤膜的制备及性能表征[D]. 上海师范大学, 2016. [4] 刘忠洲, 续曙光, 李锁定. 微滤、超滤过程中的膜污染与清洗[J]. 水处理技术, 1997, (4): 187-193. [5] 季君晖, 史维明. 抗菌材料[M]. 化学工业出版社, 2004. [6] And Y S, Sun G. Novel Refreshable N-Halamine Polymeric Biocides: N-Chlorination of Aromatic Polyamides[J]. Industrial & Engineering Chemistry Research, 2004, 43(17): 5015-5020. [7] Braun M, Sun Y. Antimicrobial polymers containing melamine derivatives. I. Preparation and characterization of chloromelamine-based cellulose[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(15): 3818-3827. [8] Worley S, Li F, Wu R, et al. A novel N-halamine monomer for preparing biocidal polyurethane coatings[J]. Surface Coatings International Part B: Coatings Transactions, 2003, 86(4): 273-277. [9] Sun Y, Sun G. Novel refreshable N-halamine polymeric biocides: Grafting hydantoin-containing monomers onto high performance fibers by a continuous process[J]. Journal of Applied Polymer Science, 2003, 88(4): 1032-1039. [10] Qian L, Sun G. Durable and regenerable antimicrobial textiles: Synthesis and applications of 3-methylol-2,2,5,5-tetramethyl-imidazolidin-4-one (MTMIO)[J]. Journal of Applied Polymer Science, 2003, 89(9): 2418-2425. [11] 王函. 卤胺及纳米银改性PVDF超滤膜的制备及性能研究[D]. 上海师范大学, 2017. [12] Zhou C-E, Kan C-W. Plasma-enhanced regenerable 5,5-dimethylhydantoin (DMH) antibacterial finishing for cotton fabric[J]. Applied Surface Science, 2015, 328: 410-417. [13] Rabea E I, Badawy M E T, Stevens C V, et al. Chitosan as Antimicrobial Agent: Applications and Mode of Action[J]. Biomacromolecules, 2003, 4(6): 1457-1465. [14] Ye W, Xin J H, Li P, et al. Durable antibacterial finish on cotton fabric by using chitosan-based polymeric core-shell particles[J]. Journal of Applied Polymer Science, 2006, 102(2): 1787-1793. [15] Elsabee M Z, Abdou E S, Nagy K S A, et al. Surface modification of polypropylene films by chitosan and chitosan/pectin multilayer[J]. Carbohydrate Polymers, 2008, 71(2): 187-195. [16] Song H, Wu D, Zhang R-Q, et al. Synthesis and application of amphoteric starch graft polymer[J]. Carbohydrate Polymers, 2009, 78(2): 253-257. [17] Hassan M S. Crease recovery properties of cotton fabrics modified by urea resins under the effect of gamma irradiation[J]. Radiation Physics and Chemistry, 2009, 78(5): 333-337. [18] 郑化, 杜予民. 纤维素/羧甲基壳聚糖共混膜结构与抗菌性能[J]. 高分子材料科学与工程, 2002, 18(4): 124-128. [19] Liu F, Qin B, He L, et al. Novel starch/chitosan blending membrane: Antibacterial, permeable and mechanical properties[J]. Carbohydrate Polymers, 2009, 78(1): 146–150. [20] Cheng X, Ma K, Li R, et al. Antimicrobial coating of modified chitosan onto cotton fabrics[J]. Applied Surface Science, 2014, 309: 138-143. [21] 黄袁炜. 改性MWNTs制备具有抗菌性和易清洁性的PVDF膜[D]. 上海师范大学, 2018. [22] Chen Y, Liu X, Liu L, et al. Functional polyvinylidene fluoride membrane anchored with silver nanoparticle with antibacterial activity[J]. Synthetic Metals, 2013, 174: 1-5. [23] Pan Y, Yu Z, Shi H, et al. A novel antifouling and antibacterial surface-functionalized PVDF ultrafiltration membrane via binding Ag/SiO2 nanocomposites[J]. Journal of Chemical Technology & Biotechnology, 2016. [24] Liu S, Sun G. Durable and Regenerable Biocidal Polymers: Acyclic N-Halamine Cotton Cellulose[J]. Industrial & Engineering Chemistry Research, 2006, 45(19): 6477-6482. [25] Kang B, Li Y-D, Liang J, et al. Novel PVDF hollow fiber ultrafiltration membranes with antibacterial and antifouling properties by embedding N-halamine functionalized multi-walled carbon nanotubes (MWNTs)[J]. RSC Advances, 2016, 6(3): 1710-1721. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号