平板陶瓷载体上SiO2-ZrO2膜的制备及其纳滤性能研究 |
作者:任秀秀,夏凌云,钟璟 |
单位: 常州大学,石油化工学院,江苏省绿色催化材料与技术重点实验室,常州 213164 |
关键词: 陶瓷膜;纳滤;溶胶-凝胶法;双氯芬酸钠 |
出版年,卷(期):页码: 2021,41(6):110-117 |
摘要: |
采用颗粒溶胶路线合成含有不同粒径的SiO2-ZrO2溶胶,将其涂覆于中空平板陶瓷微滤膜上制备SiO2-ZrO2纳滤膜并用于双氯芬酸钠的分离。在用粒径为42 nm 的SiO2-ZrO2溶胶对载体修饰的过程中,得出最佳溶胶质量分数和涂覆次数分别为0.5 %和4次。继而采用17 nm 的小粒径SiO2-ZrO2溶胶进一步涂覆,形成了更小孔径的膜,其截留分子量为310。在25 ℃和0.6 MPa的操作压力下对50 mg/L双氯芬酸钠水溶液进行纳滤测试,其通量为2.25 L/(m2·h),截留率为95.1%。当料液温度为70℃时,膜的渗透通量达到8.25 L/(m2·h),对双氯芬酸钠的截留率仍然保持在92.0%以上。 |
SiO2-ZrO2 sol with different sizes were prepared by colloidal sol route to prepare nanofiltration membranes on hollow flat ceramic for the separation of diclofenac sodium. The concentration and coating times of SiO2-ZrO2 sol with particle size of 42 nm were optimized as 0.5 wt% for 4 times on supports in the preparation. Then the pore size of membrane could be further reduced by SiO2-ZrO2 sol with particle size of 17 nm, resulting in a molecular cutoff weight of 310 Da as nanofiltration membrane. At 25 ℃ and 0.4 MPa, the membrane flux was 2.25 L/(m2·h) and the rejection was 92.5wt % in nanofiltrated 50 mg/L diclofenac sodium solutions. When the temperature was increased to 70 ℃, the flux reached to 8.25 L/(m2·h), and the rejection of diclofenac sodium remained above 92.0%. |
任秀秀(1987-),女,山西省 临汾市,讲师,博士,研究生学位,研究方向为膜分离,E-mail:renxiuxiu@cczu.edu.cn 。 |
参考文献: |
[1] Parolini M. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review[J]. Sci Total Environ, 2020, 740: 140043. [2] Mcgettigan P, Henry D. Use of Non-Steroidal Anti-Inflammatory Drugs That Elevate Cardiovascular Risk: An Examination of Sales and Essential Medicines Lists in Low-, Middle-, and High- Income Countries[J]. PLoS Med, 2013, 10 (2): 1-6. [3] Ferrari B t, Paxéus N, Giudice R L, et al. Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac[J]. Ecotoxicol Environ Saf, 2003, 55 (3): 359-370. [4] Nkoom M, Lu G, Liu J, et al. Bioconcentration, behavioral, and biochemical effects of the non-steroidal anti-inflammatory drug diclofenac in Daphnia magna[J]. Environ Sci Pollut Res, 2019, 26 (6): 5704-5712. [5] Bio S, Nunes B. Acute effects of diclofenac on zebrafish: Indications of oxidative effects and damages at environmentally realistic levels of exposure[J]. Environ Toxicol Pharmacol, 2020, 78: 103394. [6] Bhadra B N, Seo P W, Jhung S H. Adsorption of diclofenac sodium from water using oxidized activated carbon[J]. Chem Eng J, 2016, 301: 27-34. [7] Olchowski R, Zi?ba E, Giannakoudakis D A, et al. Tailoring Surface Chemistry of Sugar-Derived Ordered Mesoporous Carbons towards Efficient Removal of Diclofenac from Aquatic Environments[J]. Materials, 2020, 13 (7): 1625. [8] 曹双双, 段艳平, 涂耀仁, 等. 铁氧磁体纳米颗粒去除水体中新型污染物双氯芬酸[J]. 环境化学, 2018, 37 (04): 761-768. [9] Rizzo L, Agovino T, Nahim-Granados S, et al. Tertiary treatment of urban wastewater by solar and UV-C driven advanced oxidation with peracetic acid: Effect on contaminants of emerging concern and antibiotic resistance[J]. Water Res, 2019, 149: 272-281. [10] Surenjan A, Sambandam B, Pradeep T, et al. Synthesis, characterization and performance of visible light active C-TiO2 for pharmaceutical photodegradation[J]. J Environ Chem Eng, 2017, 5 (1): 757-767. [11] Bessa V S, Moreira I S, Tiritan M E, et al. Enrichment of bacterial strains for the biodegradation of diclofenac and carbamazepine from activated sludge[J]. Int Biodeterior Biodegrad, 2017, 120: 135-142. [12] Licona K P M, Geaquinto L R d O, Nicolini J V, et al. Assessing potential of nanofiltration and reverse osmosis for removal of toxic pharmaceuticals from water[J]. J Water Process Eng, 2018, 25: 195-204. [13] ?y??a R, Boruta T, Gmurek M, et al. Integration of advanced oxidation and membrane filtration for removal of micropollutants of emerging concern[J]. Process Saf Environ Prot, 2019, 130: 67-76. [14] Li C, Sun W, Lu Z, et al. Ceramic nanocomposite membranes and membrane fouling: A review[J]. Water Res, 2020, 175: 115674. [15] Xu R, Zhang P, Wang Q, et al. Influences of multi influent matrices on the retention of PPCPs by nanofiltration membranes[J]. Sep Purif Technol, 2019, 212: 299-306. [16] Yang J, Yoshioka T, Tsuru T, et al. Pervaporation characteristics of aqueous–organic solutions with microporous SiO2–ZrO2 membranes: Experimental study on separation mechanism[J]. J Membr Sci, 2006, 284 (1): 205-213. [17] Puthai W, Kanezashi M, Nagasawa H, et al. Nanofiltration performance of SiO2-ZrO2 membranes in aqueous solutions at high temperatures[J]. Sep Purif Technol, 2016, 168: 238-247. [18] Anisah S, Kanezashi M, Nagasawa H, et al. Hydrothermal stability and permeation properties of TiO2-ZrO2 (5/5) nanofiltration membranes at high temperatures[J]. Sep Purif Technol, 2019, 212: 1001-1012. [19] 严强, 陈奕山, 邱鸣慧, 等. 超声辅助的溶胶-凝胶法制备ZrO2纳滤膜[J]. 膜科学与技术, 2018, 6: 90-96. [20] Asaeda M, Sakou Y, Yang J, et al. Stability and performance of porous silica–zirconia composite membranes for pervaporation of aqueous organic solutions[J]. J Membr Sci, 2002, 209 (1): 163-175. [21] 徐南平, 邢卫红, 赵宜江. 无机膜分离与技术[M]// 北京:化学工业出版社, 2003: 58-61. [22] Xu M, Feng X, Liu Z, et al. MOF laminates functionalized polyamide self-cleaning membrane for advanced loose nanofiltration[J]. Sep Purif Technol, 2021, 275: 119150. [23] Puthai W, Kanezashi M, Nagasawa H, et al. Effect of firing temperature on the water permeability of SiO2–ZrO2 membranes for nanofiltration[J]. J Membr Sci, 2016, 497: 348-356. [24] Sadeghhassani S, Rashidi A, Adinehnia M, et al. Facile and economic method for preparation of nano-colloidal Silica with controlled size and stability[J]. Int J Nano Dimen, 2014, 5 (2): 177-185. [25] Xu R, Wang J, Kanezashi M, et al. Reverse osmosis performance of organosilica membranes and comparison with the pervaporation and gas permeation properties[J]. AIChE J, 2013, 59 (4): 1298-1307. [26] Puthai W, Kanezashi M, Nagasawa H, et al. SiO2-ZrO2 nanofiltration membranes of different Si/Zr molar ratios: Stability in hot water and acid/alkaline solutions[J]. J Membr Sci, 2017, 524: 700-711. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号