基于羟丙基-β-环糊精的界面聚合纳滤膜及其性能研究
作者:李春1,贾萌萌1,张梦蕾1,秦振平 2,马语晨1,梁玉仓3,郭红霞1
单位: 1. 北京工业大学材料与制造学部;2. 北京工业大学环境与生命学部,北京 100124; 3. 德国图宾根大学无机化学研究所,图宾根,72076,德国
关键词: 纳滤膜;羟丙基-β-环糊精;界面聚合;渗透通量;耐氯性能
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2021,41(6):118-125

摘要:
 以羟丙基-β-环糊精(HP-β-CD)为水相单体,γ-氨丙基三乙氧基硅烷(KH-550)为添加剂,与均苯三甲酰氯(TMC)在聚砜(PSf)基膜上界面聚合,制备HP-β-CD-TMC/PSf复合纳滤膜。通过FTIR、SEM、AFM和Zeta电位等表征了膜表面的表面化学组分、形貌及荷电性,探究了不同KH-550浓度对PSf复合膜分离性能的影响,并考察了复合膜的耐氯性能。结果表明,水相中KH-550浓度为0.15 wt% 时,制备的复合纳滤膜亲水性较好,对伊文思蓝(EB)、刚果红(CR)、木质素磺酸钠(SL)的截留率均在90%以上,通量大于54.5 L/m2·h·MPa。复合膜经10.0 g/L的次氯酸钠(NaClO)浸泡200h后,其通量和截留率无明显变化,表明该复合膜具有较好的耐氯稳定性。
 The composite nanofiltration membrane with good chlorine resistance was prepared by interfacial polymerization on polysulfone (PSf) substrate membrane using hydroxypropyl-β-cyclodextrin (HP-β-CD) as aqueous phase, γ-aminopropyltriethoxysilane (KH-550) as additive and triformyl chloride (TMC) as organic phase. The surface chemical composition, morphology, structure and charges of the membranes were characterized by FTIR, SEM, AFM and zeta potential. The effect of KH-550 concentration on the separation performance as well as the chlorine tolerance of membranes was explored. The results showed that the optimal HP-β-CD-TMC/PSf membrane exhibited water contact angle of 69°with water permeabity of 70.7 L/m2·h·MPa, when the concentration of KH-550 is 0.15wt%, and the rejection rate of evans blue (EB), congo red (CR) and sodium lignosulfonate (SL) is more than 90% along with flux more than 54.5 L/m2·h·MPa. In addition, the membrane displayed an excellent chlorinea resistance after soaking in 10.0g/L NaClO for 200 hours.

基金项目:
国家自然科学基金面上项目(21878003,22178007);北工大国际科研合作种子基金项目

作者简介:
李春(1997-)男,天津宝坻人,硕士研究生,研究方向为聚合物膜改性及性能研究。E-mail: chunl@emails.bjut.edu.cn。

参考文献:
 [1] Mohammad AW, Teow YH, Ang WL, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356:226-254.
[2] Yang Z, Zhou Y, Feng Z, et al. A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification[J]. Polymers, 2019, 11(8):1252.
[3] Zhao Y, Tong T, Wang X, et al. Differentiating Solutes with Precise Nanofiltration for Next Generation Environmental Separations: A Review[J]. Environmental Science & Technology, 2021, 55(3):1359-1376.
[4] Shannon MA, Bohn PW, Elimelech M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185):301-310.
[5] Lin S, Zhao H, Zhu L, et al. Seawater desalination technology and engineering in China: A review[J]. Desalination, 2021, 498:114728.
[6] Huang Y, Sun J, Wu D, et al. Layer-by-layer self-assembled chitosan/PAA nanofiltration membranes[J]. Separation and Purification Technology, 2018, 207:142-150.
[7] Yuan S, Zhang G, Zhu J, et al. Hydrogel assisted interfacial polymerization for advanced nanofiltration membranes[J]. Journal of Materials Chemistry A,2020, 8(6):3238-3245.
[8] Zhao X, Zhang R, Liu Y, et al. Antifouling membrane surface construction: Chemistry plays a critical role[J]. Journal of Membrane Science, 2018, 551:145-171.
[9] Wu M, Ma T, Su Y, et al. Fabrication of composite nanofiltration membrane by incorporating attapulgite nanorods during interfacial polymerization for high water flux and antifouling property[J]. Journal of Membrane Science, 2017, 544:79-87.
[10] Abu Seman MN, Khayet M, Hilal N. Development of antifouling properties and performance of nanofiltration membranes modified by interfacial polymerisation[J]. Desalination,2011, 273(1):36-47.
[11] Cho KL, Hill AJ, Caruso F, et al. Chlorine Resistant Glutaraldehyde Crosslinked Polyelectrolyte Multilayer Membranes for Desalination[J]. Advanced Materials, 2015, 27(17):2791-2796.
[12] Tin MMM, Anioke G, Nakagoe O, et al. Membrane fouling, chemical cleaning and separation performance assessment of a chlorine-resistant nanofiltration membrane for water recycling applications[J]. Separation and Purification Technology, 2017, 189:170-175.
[13] Shintani T, Matsuyama H, Kurata N, et al. Development of a chlorine-resistant polyamide nanofiltration membrane and its field-test results[J]. Journal of Applied Polymer Science, 2007, 106(6):4174-4179.
[14] Xue J, Jiao Z, Bi R, et al. Chlorine-resistant polyester thin film composite nanofiltration membranes prepared with β-cyclodextrin[J]. Journal of Membrane Science, 2019, 584:282-289.
[15] 刘丽雪, 张少峰, 赵长伟, 等. β-环糊精为水相单体的复合纳滤膜制备及染料截留性能[J]. 化工学报, 2020, 71(2):889-898.
[16] Yu Z, Pan Y, He Y, et al. Preparation of a novel anti-fouling β-cyclodextrin–PVDF membrane[J]. RSC Advances, 2015, 5(63):51364-51370.
[17] Wu H, Tang B, Wu P. Preparation and characterization of anti-fouling β-cyclodextrin/polyester thin film nanofiltration composite membrane[J]. Journal of Membrane Science, 2013, 428:301-308.
[18] Al-Qubaisi MS, Rasedee A, Flaifel MH, et al. Characterization of thymoquinone/hydroxypropyl-β-cyclodextrin inclusion complex: Application to anti-allergy properties[J]. European Journal of Pharmaceutical Sciences,2019, 133:167-182.
[19] López-González H, Moreno-Cruz E, Rojas-Hernández A, et al. Synthesis and characterization of praseodymium-2-hydroxypropyl-β-cyclodextrin inclusion complex[J]. Journal of Radioanalytical and Nuclear Chemistry,2019, 319(3):837-845.
[20] Lavanya C, Geetha Balakrishna R. Naturally derived polysaccharides-modified PSF membranes: A potency in enriching the antifouling nature of membranes[J]. Separation and Purification Technology, 2020, 230:115887.
[21] Cheng XQ, Liu Y, Guo Z, et al. Nanofiltration membrane achieving dual resistance to fouling and chlorine for “green” separation of antibiotics[J]. Journal of Membrane Science, 2015, 493:156-166.
[22] Cheng J, Shi W, Zhang L, et al. A novel polyester composite nanofiltration membrane formed by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC)[J]. Applied Surface Science, 2017, 416:152-159.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号