应用光学相干断层成像技术分析膜蒸馏过程中的蛋白质膜污染行为
作者:刘杰12,王业威2,刘鑫2,李炜怡2
单位: 1. 哈尔滨工业大学 环境学院,哈尔滨150090;2. 南方科技大学 环境科学与工程学院,深圳 518000
关键词: 膜蒸馏;蛋白质膜污染;原位表征;光学相干断层成像
DOI号:
分类号: TQ028;TK2
出版年,卷(期):页码: 2021,41(6):126-132

摘要:
 膜蒸馏是一种新兴的水/废水处理技术。蛋白质膜污染是膜蒸馏(MD)过程中普遍存在的现象,其机理的解析有助于提高膜蒸馏的处理效率。本研究旨在应用光学相干断层成像技术(OCT)分析MD过程中的蛋白质膜污染行为。在原位表征的基础上,通过数值算法,以不同方式解读OCT数据集。不但成功追踪到渗透通量下降诱发的分离膜位移,还通过对比面平均强度(SAI)剖面曲线,证实了蛋白质污染物在进料液-膜界面区域的沉积。此外,通过评估每个坐标面上的正异常点份率(FPAs),定量揭示了污染层的时空演化。本研究将有助于开发缓解蛋白质膜污染的膜蒸馏工艺。
  Protein fouling is a pervasive phenomenon in membrane distillation (MD), which is an emerging technique for water/wastewater treatment.  Improving the efficiency of MD demands detailed insights into the mechanisms of fouling by proteins.  This study was aimed at analyzing the protein fouling in MD via an approach based on optical coherence tomography (OCT), which is an advanced technique offering the ability of optical sectioning.  The MD system was integrated with OCT in an effort to in-situ characterize the fouling behavior of lysozyme (LYS) at a micron scale.  Numerical algorithms were employed to interpret the OCT datasets in various ways.  Although the 2D tomographic images were unable to visualize the fouling layer of protein, it was successful to capture the membrane shift induced by the flux decline, providing indirect evidence for the protein fouling.  On the other hand, the deposition of protein was confirmed by comparing the profiles of surface-averaged intensity (SAI).  More details about the spatiotemporal evolution of the fouling layer were quantitatively revealed by evaluating the fraction of positive anomalies (FPAs) that approximated the coverage of protein foulants at each coordinate surface.  While confirming the strength of OCT for characterizing membrane fouling by proteins, this study lends itself to the development of MD processes with mitigated fouling by proteins.     

基金项目:
国家自然科学基金项目(21878140);广东省科技项目(2017ZT07Z479和2019KTSCX158);深圳市科技项目(JCYJ20190809172011680)

作者简介:
刘杰(1989-),男,湖南邵东人, 哈尔滨工业大学和南方科技大学联合培养博士生,研究方向为膜分离技术,E-mail:11849580@mail.sustech.edu.cn.。

参考文献:
 [1] WHO-UNICEF. Progress in drinking water and sanitation 2012 update, Joint Monitoring Programme for Water Supply and Sanitation [M]. 2012.
[2] RASTOGI N K, CASSANO A, BASILE A. Water treatment by reverse and forward osmosis [M]. Advances in Membrane Technologies for Water Treatment. 2015: 129-54.
[3] ALKHUDHIRI A, DARWISH N, HILAL N. Membrane distillation: A comprehensive review [J]. Desalination, 2012, 287(2-18.
[4] WARSINGER D M, SWAMINATHAN J, GUILLEN-BURRIEZA E, et al. Scaling and fouling in membrane distillation for desalination applications: A review [J]. Desalination, 2015, 356(294-313.
[5] 吕晓龙. 疏水膜的污染、润湿与干燥探讨 [J]. 膜科学与技术, 2020, 40(01): 196-203.
[6] LIU C, CHEN L, ZHU L. Fouling mechanism of hydrophobic polytetrafluoroethylene (PTFE) membrane by differently charged organics during direct contact membrane distillation (DCMD) process: An especial interest in the feed properties [J]. Journal of Membrane Science, 2018, 548(125-35.
[7] 冯敏, 王磊, 杨子晗, et al. 腐殖酸-牛血清蛋白混合污染物的超滤膜污染行为 [J]. 膜科学与技术, 2020, 40(03): 22-7+36.
[8] MA Y, ZYDNEY A L, CHEW J W. Membrane fouling by lysozyme: Effect of local interaction [J]. AIChE Journal, 2021, 67(7): 
[9] FANE A G, FELL C J D. A review of fouling and fouling control in ultrafiltration [J]. Desalination, 1987, 62(117-36.
[10] NILSSON J L. Protein fouling of UF membranes- causes and consequences [J]. Journal of membrane science, 1990, 52(2): 121-42.
[11] HO C-C, ZYDNEY A L. Effect of membrane morphology on the initial rate of protein fouling during microfiltration [J]. Journal of Membrane Science, 1999, 155(2): 261-75.
[12] FIELD R W, WU D, HOWELL J A, et al. Critical flux concept for microfiltration fouling [J]. Journal of Membrane Science, 1995, 100(3): 259-72.
[13] BHATTACHARJEE S, KO C-H, ELIMELECH M. DLVO Interaction between Rough Surfaces [J]. Langmuir, 1998, 14(12): 3365-75.
[14] DERJAGUIN B, LANDAU L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes [J]. Progress in Surface Science, 1993, 43(1): 30-59.
[15] CHEN L, TIAN Y, CAO C Q, et al. Interaction energy evaluation of soluble microbial products (SMP) on different membrane surfaces: role of the reconstructed membrane topology [J]. Water Res, 2012, 46(8): 2693-704.
[16] LIU C, CHEN L, ZHU L. Fouling behavior of lysozyme on different membrane surfaces during the MD operation: An especial interest in the interaction energy evaluation [J]. Water Res, 2017, 119(33-46.
[17] 张建东, 苏志国, 欧阳藩. 微滤膜上污染的蛋白质的定量方法 [J]. 膜科学与技术, 2001, 05): 48-52.
[18] CEN J, VUKAS M, BARTON G, et al. Real time fouling monitoring with Electrical Impedance Spectroscopy [J]. Journal of Membrane Science, 2015, 484(133-9.
[19] SIM S T V, CHONG T H, KRANTZ W B, et al. Monitoring of colloidal fouling and its associated metastability using Ultrasonic Time Domain Reflectometry [J]. Journal of Membrane Science, 2012, 401-402(241-53.
[20] WANG Y N, WEI J, SHE Q, et al. Microscopic characterization of FO/PRO membranes--a comparative study of CLSM, TEM and SEM [J]. Environ Sci Technol, 2012, 46(18): 9995-10003.
[21] CHAN R, CHEN V. Characterization of protein fouling on membranes: opportunities and challenges [J]. Journal of Membrane Science, 2004, 242(1-2): 169-88.
[22] FERCHER A F. Optical coherence tomography - development, principles, applications [J]. Z Med Phys, 2010, 20(4): 251-76.
[23] LIU X, CHEN G, TU G, et al. Membrane fouling by clay suspensions during NF-like forward osmosis: Characterization via optical coherence tomography [J]. Journal of Membrane Science, 2020, 602(
[24] BAUER A, WAGNER M, SARAVIA F, et al. In-situ monitoring and quantification of fouling development in membrane distillation by means of optical coherence tomography [J]. Journal of Membrane Science, 2019, 577(145-52.
[25] LIU J, LI Z, WANG Y, et al. Analyzing scaling behavior of calcium sulfate in membrane distillation via optical coherence tomography [J]. Water Res, 2021, 191(116809.
[26] LI W, LIU X, WANG Y N, et al. Analyzing the Evolution of Membrane Fouling via a Novel Method Based on 3D Optical Coherence Tomography Imaging [J]. Environ Sci Technol, 2016, 50(13): 6930-9.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号