电场强化煤基炭膜处理含酚废水过程中的失活与再生性能研究
作者:辛红, 潘宗林, 徐爽, 严晓青, 范新飞, 宋成文, 王同华
单位: 1.大连海事大学 环境科学与工程学院,大连 116026;2.大连理工大学化工学院,精细化工国家重点实验室,炭膜及多孔炭材料课题组,大连,116024
关键词: 煤基炭膜; 电场强化膜分离; 含酚废水; 失活机理; 再生方法
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2021,41(6):138-145

摘要:
 电场强化煤基炭膜(CM)实现了电化学氧化与膜分离技术的一体化耦合,在有机废水处理领域展现出良好的应用前景,但在长周期处理过程中会出现催化活性下降、水处理性能降低的现象。本文以模拟含酚废水为对象研究了电场强化CM在含酚废水处理过程中的失活过程与再生方法,采用扫描电镜和电化学工作站研究了失活前后炭膜的微观形貌和电化学性能,讨论了CM的失活机理,考察了不同处理方法对失活炭膜(CM-D)的再生性能。结果表明,在电场强化的作用下(2.0 V),煤基炭膜对水中苯酚的去除效率显著提升;处理高浓度废水会加速CM的失活;CM失活的主要原因是苯酚分子电聚合生成了聚合物沉积在CM的颗粒表面,覆盖了电化学活性位点导致的。采用溶剂清洗和电化学氧化处理难以实现CM的完全再生;热解处理表现出较好的再生性能,且随着热解温度的升高,再生后CM-D的水处理性能提升,当温度为600 ℃时,CM-D的性能恢复到与原膜相当,说明此温度条件下处理对CM-D具有良好的再生效果。
  The electric field enhanced coal-based carbon membrane (CM), which simultaneously couples electrochemical oxidation and membrane separation, shows the great application prospects for organic wastewater treatment. However, the catalytic activity of CM will decrease during the long-tern operation, thus resulting in the reduction in water treatment performance. In this work, the deactivation process and regeneration method of electric field-enhanced CM during phenolic wastewater treatment was investigated based on the simulated phenolic wastewater. The micromorphology and electrochemical performance of the CM and deactivated CM (CM-D) were studied by scanning electron microscopy (SEM) and electrochemical workstation, respectively. The deactivation mechanism of CM was discussed and the regeneration performance of CM-D by different treatment methods were investigated. Results show that the phenol removal efficiency of CM is significantly improved under the applied voltage of 2.0 V. The deactivation of CM will be accelerated during the treatment of high-concentration wastewater. The main reason for the deactivation of CM was the electropolymerization of phenol molecules to form a polymer deposited on the surface of the CM particles, which covered the electrochemically active sites. It is difficult to achieve the complete regeneration of CM-D by solvent cleaning and electrochemical oxidation treatment. The pyrolysis treatment possesses better regeneration performance, the water treatment performance of CM-D after regeneration increases with the increase of pyrolysis temperature. The performance of CM-D is almost completely restored when the temperature reaches to 600 ℃, indicating the good regeneration performance on CM-D under this condition.

基金项目:
辽宁省高等学校创新人才支持计划,中央高校基本科研业务费3132021155

作者简介:
辛红(1996-),女,辽宁大连人,硕士研究生,从事电催化炭膜水处理研究.

参考文献:
 [1] Zhang R, Liu Y, He M, et al. Antifouling membranes for sustainable water purification: strategies and mechanisms[J]. Chemical Society Reviews, 2016:10-1039.
[2] Lee A, Elam J W, Darling S B. Membrane materials for water purification: design, development, and application[J]. Environmental Science Water Research & Technology, 2016,2(1):17-42.
[3] Miller D, Dreyer D, Bielawski C, et al. Surface Modification of Water Purification Membranes[J]. Angewandte Chemie International Edition in English, 2016,129(17):4662.
[4] Jhaveri J H, Murthy Z. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes[J]. Desalination, 2016,379:137-154.
[5]Moreira F. C., Boaventura R. A. R., Brillas E., et al. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters[J]. Applied Catalysis B: Environmental, 2017, 202:217-261.
[6] Fan X, Zhao H, Quan X, et al. Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation[J]. Water Research, 2016,88:285-292.
[7] Rx A , Liu H A, Lin L A , et al. Ultraselective carbon molecular sieve membrane for hydrogen purification[J]. Journal of Energy Chemistry, 2020, 50:16-24.
[8] Pan Z, Yu F, Li L, et al. Low-cost electrochemical filtration carbon membrane prepared from coal via self-bonding[J]. Chemical Engineering Journal, 2020,385:123928.
[9] 潘宗林, 杨佳伟, 李琳,等. 造孔剂对煤基管状炭膜的结构和性能影响[J]. 膜科学与技术, 2019(5).
[10] 姜士敏, 宋成文, 李琳, 等. 成型工艺对煤基板式微滤炭膜的性能影响 [J]. 膜科学与技术, 2015, 35(2): 20-24.
[11] Pan Z , Yu F , Li L , et al. Electrochemical microfiltration treatment of bisphenol A wastewater using coal-based carbon membrane[J]. Separation and Purification Technology, 2019, 227:115695.
[12] Sun M, Feng G, Zhang M, et al. Enhanced removal ability of phenol from aqueous solution using coal-based carbon membrane coupled with electrochemical oxidation process[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2018,540:186-193.
[13] Gao G, Vecitis C D. Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry.[J]. Environmental Science & Technology, 2011,45(22):9726-9734.
[14] Gao G, Vecitis C D. Electrocatalysis aqueous phenol with carbon nanotubes networks as anodes: Electrodes passivation and regeneration and prevention[J]. Electrochimica Acta, 2013,98:131-138.
[15] Gao G, Vecitis C D. Doped carbon nanotube networks for electrochemical filtration of aqueous phenol: electrolyte precipitation and phenol polymerization.[J]. ACS Applied Materials & Interfaces, 2012,4(3):1478-1489.
[16] Duan W, Ronen A, Walker S, et al. Polyaniline-Coated Carbon Nanotube Ultrafiltration Membranes: Enhanced Anodic Stability for In Situ Cleaning and Electro-Oxidation Processes[J]. ACS Applied Materials & Interfaces, 2016, 8(34):22574.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号