新型卷式膜组件的静态混合隔网研制及其强化传质研究
作者:刘久清,曾凡立,白立顺,洪梓坤,宋飞飞
单位: 中南大学 冶金与环境学院 长沙 410083
关键词: 卷式膜组件;隔网;静态混合;传质强化;CFD模拟
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2021,41(6):133-137

摘要:
 本文通过借鉴静态混合器的原理,结合传统隔网的特性,提出了一种应用于卷式膜组件的新型静态混合隔网;利用计算流体力学(CFD)对静态混合型隔网膜组件分离葡聚糖溶液过程的流场进行了初步的模拟分析。同时,对同一过程中的压力降进行CFD模拟和实验测量,验证了模拟的有效性;此外,还对静态混合隔网膜组件的膜分离性能进行了研究分析。结果表明,新型静态混合隔网使膜表面附近和流道中心的流体相互迁移混合,增加了传质性能,降低了浓差极化,提高了能量利用率。在同等传质系数情况下,其比传统隔网膜组件膜分离过程中测量的能耗降低50%以上。
 Based on the principle of static mixer and the characteristics of traditional spacer, a new static mixing spacer for spiral-wound membrane module is proposed in this paper, computational fluid dynamics (CFD) was used to simulate the flow field on the separation of dextran solutions by spiral-wound membrane module with static mixing spacer. Meanwhile, CFD simulation and experimental measurement on the pressure drop during the same process were carried out to verify the effectiveness of the simulation; in addition, it was studied on the membrane separation performance on membrane module with static mixing spacer. It turns out that the new static mixer spacers migrate and mix the fluids with each other near the membrane surface and in the center of the channel, which increases the mass transfer performance, reduces the concentration polarization and improves the energy utilization. Under the condition of the same mass transfer coefficient, its energy consumption is reduced by more than 50% compared with that measured during the process of the membrane module separation with traditional spacer.

基金项目:
国家重点研发计划(2018YFB0104200); 湖南省自然科学基金资助项目(2020JJ4717); 湖南省科技攻关项目(2020GK2056); 湖南省自然科学基金资助项目(2017JJ2317)

作者简介:
刘久清(1974?),男,湖南长沙人,教授,从事膜分离技术的研究.

参考文献:
 [1] T Iwasaki, Y Shimizu, I Kimura. Sensitivity of free bar morphology in rivers to secondary ?ow modeling: Linear stability analysis and numerical simulation[J]. Adv Water Resour, 2016, 92:57-72.
[2] K L Hickenbottom, J Vanneste, M Elimelech, et al. Assessing the current state of commercially available membranes and spacers for energy production with pressure retarded osmosis[J]. Desalination, 2016, 389:108-118.
[3] J C Min, B Q Zhang. Numerical studies of convective mass transfer enhancement in a membrane channel by rectangular winglets[J]. Chinese J Chem Eng, 2014, 22:1061-1071.
[4] S R Suwarno, X Chen, T H Chong, et al. The impact of flux and spacers on biofilm development on reverse osmosis membranes[J]. J Membr Sci, 2012, 405-406:219-232.
[5] A Saeed, R Vuthaluru, H B Vuthaluru. Investigations into the effects of mass transport and ?ow dynamics of spacer ?lled membrane modules using CFD[J]. Chem Eng Res Des, 2015, 93:79-99.
[6] A Shrivastava, S Kumar, E L Cussler. Predicting the effect of membrane spacers on mass transfer[J]. J Membr Sci, 2008, 323:247-256.
[7] G A Fimbres-Weihs, D E Wiley. Numerical study of two-dimensional multi-layer spacer designs for minimum drag and maximum mass transfer[J]. J Membr Sci, 2008, 325:809-822.
[8] J X Liu, Z J Liu, X F Xu, et al. Saw-tooth spacer for membrane filtration: Hydrodynamic investigation by PIV and filtration experiment validation[J]. Chem Eng Process, 2015, 98:23-34.
[9] C Fritzmann, M Wiese, T Melin, et al. Helically microstructured spacers improve mass transfer and fractionation selectivity in ultra?ltration[J]. J Membr Sci, 2014, 463:41-48.
[10] W Y Li, K K Chen, Y N Wang, et al. A conceptual design of spacers with hairy structures for membrane processes[J]. J Membr Sci, 2016, 510:314-325. 
[11] J Balster, D F Stamatialis, M Wessling. Membrane with integrated spacer[J]. J Membr Sci, 2010, 360:185-199.
[12] W C Lin, Y T Zhang, D Y Li, et al. Roles and performance enhancement of feed spacer in spiral wound membrane modules for water treatment: a 20-year review on research evolvement[J]. Water Res, 2021, 198, 117146.
[13] J Q Liu, A Iranshahi, Y C Lou, G Lipscomb. Static mixing spacers for spiral wound modules[J]. J Membr Sci, 2013, 442:140-148.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号