高渗透性ZrO2中空纤维陶瓷超滤膜的制备研究 |
作者:詹涛,张小珍,周俊,王少华,胡学兵,常启兵 |
单位: 景德镇陶瓷大学材料科学与工程学院,江西省高校无机膜重点实验室,景德镇 333403 |
关键词: 中空纤维陶瓷膜;支撑体;溶胶浸渍涂覆技术;超滤膜;氧化钇稳定氧化锆 |
DOI号: |
分类号: TQ174 |
出版年,卷(期):页码: 2022,42(1):41-49 |
摘要: |
采用相转化法制备的高渗透性中空纤维陶瓷微滤膜为支撑体,通过溶胶浸渍涂覆技术制备了小孔径ZrO2陶瓷超滤膜。研究了支撑体预处理、溶胶组成、热处理温度、涂覆次数等因素对制备的ZrO2超滤膜的微结构及性能的影响。结果表明,适量钇的引入可使ZrO2形成稳定的立方萤石结构晶相,可避免膜层出现开裂。在优化的热处理温度、溶胶组成条件下,通过二次涂覆可在中空纤维膜支撑体表面制备出连续光滑、无缺陷的ZrO2膜层,膜厚度和平均孔径分别为450 nm和12 nm,相应的陶瓷膜的纯水通量和抗弯强度分别可达到2020 L·m-2·h-1·MPa-1和97.1 MPa。 |
ZrO2 ceramic ultrafiltration membranes with small pore size were prepared directly by the sol dip-coating technique, using highly permeable hollow fiber ceramic microfiltration membranes by phase inversion method as the support. The effects of the pretreatment of the support, sol composition, heat-treatment temperature, and coating times on the microstructure and properties of the prepared ZrO2 ultrafiltration membranes were investigated. The results showed that the introduction of an appropriate amount of yttrium could lead to the formation of ZrO2 crystalline phase with a stable cubic fluorite structure, which could avoid the cracking of the active membrane layer. Under the optimized conditions of heat treatment temperature and sol composition, a continuous and smooth ZrO2 membrane layer without any defects can be obtained on the hollow fiber support after twice coating. The formed ZrO2 layer shows a thickness of about 450 nm and mean pore size of 12 nm, and the corresponding pure water flux and flexural strength of the ceramic membrane could reach 2020 L·m-2·h-1·MPa-1 and 97.1 MPa, respectively. |
基金项目: |
国家自然科学基金资助项目(52062022); 江西省研究生创新基金项目(No. YC2019-S387). |
作者简介: |
詹涛(1995-), 男, 安徽合肥人, 硕士生, 主要从事中空纤维陶瓷膜的制备和应用研究 |
参考文献: |
[1] Zhang X, Lin B, Ling Y, et al. Highly permeable porous YSZ hollow fiber membrane prepared using ethanol as external coagulant [J]. Journal of Alloys and Compounds, 2010, 494(1-2): 366-71. [2] 李 方, 张 孟. 增强型中空纤维膜制备及其在水处理方面的应用[J]. 膜科学与技术, 2020, 40(05): 133-139. [3] 段翠佳, 曹义鸣, 陈赞. ZIF-8对Ultem 1000中空纤维气体分离膜性能影响研究[J].膜科学与技术, 2020, 40, 202(03): 92-98. [4] 曹义鸣, 徐恒泳, 王金渠. 我国无机陶瓷膜发展现状及展望[J]. 膜科学与技术, 2013, 33(002): 1-5. [5] Abadikhah H, Zou C N, Hao Y Z, et al. Application of asymmetric Si3N4 hollow fiber membrane for cross-flow microfiltration of oily waste water [J]. Journal of the European Ceramic Society, 2018, 38(13): 4384-4394. [6] 张利剑, 汪永清, 胡学兵, 等. 中温制备高性能刚玉-莫来石质陶瓷膜支撑体[J]. 膜科学与技术, 2019, 39(5): 52-57. [7] Zhang M, Jin W, Yang F, et al. Engineering a nano-composite interlayer for a novel ceramic-based forward osmosis membrane with enhanced performance [J]. Environmental Science&Technology, 2020, 54(12): 7715-7724 [8] Yin X, Guan K, Gao P, et al. A preparation method for the highly permeable ceramic microfiltration membrane – precursor film firing method [J]. RCS Adv, 2018, 8: 2906-2914. [9] Qin W, Peng C, Wu J, et al. A sacrificial-interlayer technique for single-step coating preparation of highly permeable alumina membrane [J]. Ceram Int, 2016. 43(1): 901-904. [10] Lin Y, Dong Z, Chen X, et al. Low Temperature Sintering Preparation of High-Permeability TiO2/Ti Composite Membrane via Facile Coating Method [J]. Applied Surface Science, 2015, 349: 8-16. [11] Zhou S, Fan Y, He Y, et al. Preparation of titania microfiltration membranes supported on porous Ti–Al alloys [J]. J Membr Sci, 2008, 325(2): 546-552. [12] 王梦凡, 隋贤栋, 黄肖容. 氧化铝蜂窝陶瓷超滤膜的制备及表征[J]. 现代化工, 2017, (12):126-129. [13] 范苏, 邱鸣慧, 周 邢, 等. 多通道TiO2超滤膜的制备及其在印染废水中的应用[J]. 南京工业大学学报(自然科学版), 2011, (01):44-47. [14] Wen J, Yang C, Chen X, et al. Effective and efficient fabrication of high-flux tight ZrO2 ultrafiltration membranes using a nanocrystalline precursor[J]. J Membr Sci, 2021, 634: 11937877. [15] 徐吉上, 何勇, 顾学红, 等. α-Al2O3中空纤维支撑体的制备与表征[J]. 膜科学与技术, 2011, 31(2): 19-23. [16] Serra M F, Conconi M S, Gauna M R, et al. Mullite (3Al2O3·2SiO2) ceramics obtained by reaction sintering of rice husk ash and alumina, phase evolution, sintering and microstructure [J]. Journal of Asian Ceramic Societies, 2015, 193: 61-67. [17] Xiaowei Da, Xianfu Chen, Baohong Sun, et al. Preparation of zirconia nanofiltration membranes through an aqueous sol–gel process modified by glycerol for the treatment of wastewater with high salinity [J]. J Membr Sci, 2016, 504:29-39. [18] Zhang X, Suo S, Jiang Y, et al. Microstructure evolution and properties of YSZ hollow fiber microfiltration membranes prepared at different suspension solid content for water treatment [J]. Desalination and Water Treatment, 2015, 57(45): 73-85. [19] 杨 靖, 李淋钰, 李 波, 等. ZrO2溶胶的稳定性及溶胶-凝胶材料转变的物相-化学结构分析[J]. 膜科学与技术, 2018, 38(4): 23-26. [20] 周邢, 邱鸣慧, 范益群. 湿化学法制备多通道ZrO2超滤膜[J]. 南京工业大学学报, 2011, 33(3): 78-81. [21] 闫海乐, 茹红强, 喻亮, 等.溶胶-凝胶法陶瓷表面氧化锆薄膜的制备、性能及影响机制[J]. 材料保护, 2010, 43(2): 9-12. [22] 张静.添加剂及底膜对溶胶-凝胶法制备ZrO2超滤膜的影响研究[D]. 南京:南京工业大学, 2005.. [23] 张伟,陈献富,范益群,等.溶胶-凝胶法制备TiO2掺杂α-Al2O3高通量陶瓷超滤膜[J]. 膜科学与技术, 2020, 40(5): 16-22. [24] S Singh a, K.C Khulbe a, T Matsuura a, P Ramamurthy b, et al. Membrane characterization by solute transport and atomic force microscopy [J]. J Membr Sci, 1998, 142(1): 111-27. [25] Sajaa S, Bouazizia A, Achiou B, et al. Fabrication of low-cost ceramic ultrafiltration membrane made from bentonite clay and its application for soluble dyes removal[J]. J Euro Ceram Soc, 2020, 40(6): 2453-2462. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号