高浓度硝酸溶液的扩散渗析过程研究
作者:赵宗良,郭红霞,林育群,王保国,郭春禹
单位: 1.北京工业大学,材料与制造学部,生态环境与技术研究所,北京100124 2.清华大学,化学工程系,北京 100084; 3.金达泰克电子系统(北京)有限公司,北京 100095
关键词: 扩散渗析;硝酸回收;离子交换膜;膜内扩散速率
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2022,42(1):110-114

摘要:
 本文采用耐酸性良好的离子交换膜,研究含金属离子高浓度硝酸溶液的扩散渗析过程,以回收硝酸。分别考察了进料液流量、硝酸浓度、酸水流量比等操作条件对非稳态扩散渗析过程的酸回收率和金属离子截留率的影响。结果表明硝酸的回收率随进料液流量的增大先增加后下降,随原料液中硝酸浓度的增大而下降,随酸水流量比的增大而增加。当进料液中硝酸浓度为7mol/L,流量为10.0 mL/min、酸水流量比为1:1时,扩散渗析膜过程对硝酸的收率达到73%,Fe3+截留率为92%。根据硝酸在给定离子交换膜中的扩散速率,结合Fick定律回归数学模型参数,将模型计算结果与实际测量值对比,验证该数学模型的可靠性,为工业过程设计提供依据。
  the diffusion dialysis process of high concentration nitric acid solution containing metal ions was studied by using ion exchange membrane with good acid resistance to recover nitric acid. The effects of feed liquid flow rate, nitric acid concentration and acid water flow rate ratio on acid recovery and metal ion rejection were investigated. The results show that the recovery rate of nitric acid first increases and then decreases with the increase of feed liquid flow rate, decreases with the increase of nitric acid concentration in feed liquid, and increases with the increase of acid water flow rate ratio. When the concentration of nitric acid in feed solution is 7 mol / L, the flow rate is 10.0 ml / min, and the ratio of acid to water is 1:1, the recovery rate of nitric acid and the rejection rate of Fe3+ are 73% and 92%, respectively. According to the diffusion rate of nitric acid in the given ion exchange membrane, combined with Fick's law to regress the parameters of the mathematical model, the reliability of the mathematical model is verified by comparing the calculated results of the model with the actual measured values, which provides a basis for further industrial process design.

基金项目:

作者简介:
赵宗良(1995—),男,山东枣庄人,硕士研究生,研究方向为离子交换膜扩散渗析研究方向

参考文献:
 [1] 张书珍,孙晓然. 国内钢铁工业废水处理现状及发展趋势[J]. 中国钢铁业, 2010, 9:16-19. 
[2] 严德林. 硬铬电镀废水“零”排放[J]. 广东化工, 2015, 42(10):146-147.
[3] 戴日成,张统,郭茜,等. 印染废水水质特征及处理技术综述[J]. 给水排水, 2000, 10:33-37-1.
[4] 陈文松,宁寻安,白晓燕. 废酸液的资源化处理技术[J]. 工业水处理, 2008, (03):20-22-80.
[5] 李潜,朱红力. 萃取法回收钛白水解废酸中的硫酸[J]. 化工环保, 2003, (04):225-228.
[6] 欧阳红英. 浓缩冷冻结晶法处理废酸液的应用[J]. 环境与开发, 2000, (03):41-42.
[7] 解晨炜. 钢铁工业废水处理技术研究[J]. 中国资源综合利用, 2017, 35(08):20-21-25.  
[8] 刘志刚. 石灰中和法处理含重金属离子酸性废水[J]. 江西冶金, 2003, (06):109-110.
[9] Yan H , Xue S , Wu C , et al. Separation of NaOH and NaAl(OH)4 in alumina alkaline solution through diffusion dialysis and electrodialysis[J]. J Membr Sci, 2014, 469:436-446.
[10] 王昆,王伟,邢卫红. 扩散渗析法回收不锈钢酸洗废液中硝酸[J]. 膜科学与技术, 2010, 30(06):62-65.
[11] Luo Y, Wu C, Xu T. Diffusion dialysis-concept,prin- ciple and applications[J]. J Membr Sci, 2011, 366:1-16.
[12] Wei C,Li X,Deng Z, et al. Recovery of H2SO4 from an acid leach solution by diffusion dialys [J]. J Haz-ard Mater, 2010, 176:226-230.
[13] R?Gener F, Sartor M, Bán A, et al. Metal recovery from spent stainless steel pickling solutions[J]. Resour Conserv Recycl, 2012, 60:72-77.
[14] 张旭,王晓林,吕燕,等. 扩散渗析法回收铝箔腐蚀废液中硝酸[J]. 膜科学与技术, 2017, 37(03):85-88-96.
[15] 孙帅,孙宏骞,宋静,等. 动态扩散渗析法回收盐酸的实验与模型分析[J/OL]. 过程工程学报:1-7[2020-11-26].
[16] Gueccia R, Randazzo S, Martino D C, et al. Experimental investigation and modeling of diffusion dialysis for HCl recovery from waste pickling solution [J]. J. Environ. Manage, 2019, 235: 202212.
[17] Muhammad K, Rafael L, Pepijn P, et al. BPPO-based anion exchange membranes for acid recovery via diffusion dialysis [J]. Materials, 2017, 10(3): 266-277. 
[18] Irfan M, Afsar N U, Wang Y, et al. Investigation of key process parameters in acid recovery for diffusion dialysis using novel (MDMH-QPPO) anion exchange membranes [J]. J TAIWAN INST CHEM E, 2018, 93: 405-413.
[19] Wijmans J G , Baker R W. The solution-diffusion model: a review[J]. J Membr Sci, 1995, 107(1/2):1-21.
[20] 孙亚辉,肖连生. 扩散渗析回收含铜退镀液中的硝酸[J]. 膜科学与技术, 2015, 35(03):70-75.
[21] Kang M S, Yoo K S, Oh S J, et al. A lumped parameter model to predict hydrochloric acid recovery in diffusion dialysis [J]. J Membr Sci, 2001, 188(1): 6170.
[22] 周柏青. HCl和FeCl2在阴离子交换膜中扩散速度的测定[J]. 水处理技术, 1998(01): 3-5.
[23] Li B, Wang B, Liu Z, et al. Synthesis of nanoporous PVDF membranes by controllable crystallization for selective proton permeation[J]. J Membr Sci, 2016:111-120.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号