纳滤膜处理脱硫废水过程膜污染特性分析
作者:卢卫,明强,吴琼,杨健,潘杨,李飞,夏庆,周振
单位: 1.华能国际电力江苏能源开发有限公司南通电厂,江苏南通 226003; 2.上海电力大学环境与化学工程学院,上海 201306
关键词: 纳滤;脱硫废水;膜污染;膜通量
DOI号:
分类号: X703
出版年,卷(期):页码: 2022,42(1):138-144

摘要:
 利用纳滤装置对某电厂脱硫废水进行处理,判定主要污染物,研究纳滤膜污染特性。结果表明,在运行过程中,纳滤膜通量前18 h内由69.1 L/(m2h)迅速降低至40.2 L/(m2h),同时膜脱盐性能衰退,对Ca2+、SO42-和Mg2+的截留率呈现下降趋势。污染膜表面平均粗糙度从5.94 ± 2.13 nm增加至132.7 ± 27.6 nm,接触角从43.5°增加至62.5°。扫描电镜图显示,污染膜表面呈现凹凸不平片状物质和颗粒沉积物;污染层元素分析结果证实,硫酸盐和金属离子形成的沉积物对纳滤膜NF270的结垢贡献较大,主要成分为CaSO4。长期运行过程中,纳滤膜表面形成以无机污染为主,同时存在有机污染的复合污染。
 The flue gas desulfurization wastewater of a power plant was treated by nanofiltration (NF) membrane. The main foulants were determined and the fouling properties of NF membrane were studied. It has been found that membrane flux decreased rapidly from 69.1 L/(m2h) to 40.2 L/(m2h) within 18 hours. Meanwhile, the membrane desalination performance deteriorated, and the rejection rates of Ca2+, SO42- and Mg2+ declined during operation. The average surface roughness of NF membrane increased from 5.94 ± 2.13 nm to 132.7 ± 27.6 nm and the contact angle increased from 43.5° to 62.5° after fouling. Scanning electron microscope (SEM) images showed that flaky and granular foulants appeared on the surface of the fouled membrane. The results of elemental analysis of fouling layer confirmed that the deposits formed by sulfate and metal ions contributed significantly to the fouling of NF270, and the main foulant was CaSO4. In the long-term operation process, NF membrane suffered both organic and inorganic fouling, and inorganic fouling dominated the fouling process.

基金项目:
上海市曙光计划项目(19SG49);中国华能集团有限公司“污泥/固废特性分析与污泥资源化关键技术”(HNKJ19-G02);上海市青年科技英才扬帆计划(21YF1414900)。

作者简介:
卢卫(1970-),男,上海,助工,本科,电厂工业废水处理

参考文献:
 [1] Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356: 226—254.
[2] Labbez C, Fievet P, Szymczyk A, et al. Retention of mineral salts by a polyamide nanofiltration membrane[J]. Sep Purif Technol, 2003, 30(1): 47—55.
[3] C?linescu O, Marin N M, Ioni?? D, et al. Selective removal of sulfate ion from different drinking waters[J]. Environ Monit Assess, 2016, 6: 164—168.
[4] 胡大龙, 降晓艳, 张 宁, 等. 燃煤电厂脱硫废水浓缩工艺实验研究[J]. 应用化工, 2018, 47(8): 84—87.
[5] Semblante G U, Lee J Z, Lee L Y, et al. Brine pre-treatment technologies for zero liquid discharge systems[J]. Desalination, 2018, 441: 96—111.
[6] 蒋路漫, 周 振, 田小测, 等. 电厂烟气脱硫废水零排放工艺中试研究[J]. 热力发电, 2019, 48(1): 107—113.
[7] Luo J, Wan Y. Effects of pH and salt on nanofiltration-a critical review[J]. J Membr Sci, 2013, 438: 18—28.
[8] 邵国华, 刘艳军, 雍 骏. 纳滤膜处理脱硫废水近零排放资源化实验研究[J]. 膜科学与技术, 2019, 39(6): 124—128.
[9] 魏源送, 王健行, 岳增刚, 等.纳滤膜技术在废水深度处理中的膜污染及控制研究进展[J]. 环境科学学报, 2017, 37(1): 1—10.
[10] A. W, Mohammad, Y. H, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356: 226—254.
[11] Deon S, Dutournie P, Fievet P, et al. Concentration polarization phenomenon during the nanofiltration of multi-ionic solutions: Influence of the filtrated solution and operating conditions[J]. Water Res, 2013, 47(7): 2260—2272.
[12] Antony A, Low J H, Gray S, et al. Scale formation and control in high pressure membrane water treatment systems: A review[J]. J Membr Sci, 2011, 383(1-2): 1—16.
[13] 李琨. 纳滤分离煤化工浓盐水的效能及膜污染机理研究[D]. 哈尔滨工业大学, 2020.
[14] 康 勇, 余纪成, 鲁 佳, 等. 纳滤膜深度处理火电厂脱硫废水实验[J]. 热力发电, 2017, 46(7): 12—19.
[15] 朱安娜, 祝万鹏, 张玉春. 纳滤过程的污染问题及纳滤膜性能的影响因素[J]. 膜科学与技术, 2003, 23(1): 43—49.
[16] Nikooe N, Saljoughi E. Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution[J]. Appl. Surf. Sci, 2017, 413(15): 41—49.
[17] Li Q, Pan X, Qu Z, et al. Understanding the dependence of contact angles of commercially RO membranes on external conditions and surface features[J]. Desalination, 2013, 309: 38—45.
[18] Guo Y, Li T, Xiao K, et al. Key foulants and their interactive effect in organic fouling of nanofiltration membranes - ScienceDirect[J]. J Membr Sci, 2020, 610: 118252.
[19] Huang X, Li C, Zuo K, et al. Predominant Effect of Material Surface Hydrophobicity on Gypsum Scale Formation[J]. Environ. Sci. Technol 2020, 54(23): 15395—15404.
[20] 桂双林, 麦兆环, 付嘉琦, 等. 超滤膜处理稀土冶炼废水过程膜污染特性分析[J]. 膜科学与技术, 2020, 204(5): 81—88.
[21] Zheng L, Liu M, Li C, et al. Revealing the brick-laying process of foulants layer in membrane distillation for desulfurization wastewater treatment: Insight into the mineral scaling[J]. Desalination, 2020, 500: 114888.
[22] 赵孔双, 郝卫亮. 纳滤膜难溶盐污染过程的介电监测方法[J]. 膜科学与技术, 2011, 3: 216—222.
[23] 马 琳, 秦国彤. 膜污染的机理和数学模型研究进展[J]. 水处理技术, 2007, 33(6): 1—4, 17.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号