聚偏氟乙烯接枝共聚物纤维膜的制备及油水分离研究 |
作者:许飞,尤蒙,张树友,王华,孟建强 |
单位: 天津工业大学,分离膜与膜过程国家重点实验室,材料科学与工程学院,天津 300387 |
关键词: 聚偏氟乙烯;接枝共聚物;静电纺丝;油水分离;抗污染 |
DOI号: |
分类号: TB34 |
出版年,卷(期):页码: 2022,42(1):88-97 |
摘要: |
本文以原子转移自由基聚合制备聚偏氟乙烯(PVDF)接枝聚乙二醇单甲醚甲基丙烯酸酯(OEGMA)共聚物(PVDF-g-POEGMA),再用静电纺丝技术制备PVDF-g-POEGMA纤维膜,最后经过热处理工艺使共聚物中亲水链段在膜表面富集以改善膜的亲水性能,得到用于油水分离的PVDF静电纺丝纤维膜 (PVDF-g-POEGMA-w)。结果表明,PVDF-g-POEGMA-w膜的水接触角在5 s内从 85o变成0o,拉伸强度为2.7 MPa,爆破压力为3.01 kPa。在“死端”过滤装置中,改性膜在10 cm高度液柱驱动下分离分散油,其水通量为11630 L/(m2h),表现出高通量的优点,对乳化油和分散油的截留率均为99%以上。经过3次循环污染测试,改性膜的通量恢复率保持在91%以上,表现出良好的抗污染能力。 |
The PVDF graft copolymer was prepared by grafting oligoethylene glycol monomethyl ether (OEGMA) onto the PVDF via atom transfer radical polymerization (ATRP). The hydrophilic PVDF-g-PEGMA-w fibrous membrane was prepared using electrospinning technology containing a heat treatment process, to improve the hydrophilicity. The results showed that water contact angle of the PVDF-g-POEGMA membrane decreased from 85 o to 0° within 5 s, the tensile strength was 2.7 MPa, and the oil intrusion pressure was 3.01 kPa. During the “dead-end” filtration, the water flux of filtering the dispersed oil mixture reached up to 11,630 L/(m2h) under the gravity-driven condition. During cross-flow oil/water emulsion filtration, the PVDF-g-PEGMA-w membrane exhibited a high water flux and a separation efficiency higher than 99% for several oil/water emulsions. After 3 cycles of fouling tests, the flux recovery rate of the modified membrane remained above 91%, exhibiting excellent antifouling property. |
基金项目: |
国家自然科学基金(21875162,22075206).(一般不接受无项目资助的论文,除非具有重大学术价值.) |
作者简介: |
许飞(1996),男,辽宁锦州人,硕士生,油水分离膜研究 |
参考文献: |
[1] Peterson C H, Rice S D, Rice J W, et al. Long-term ecosystem response to the exxon valdez oil spill[J]. Science, 2003, 302:2082-2086. [2] Tai M H, Gao P, Tan B Y L, et al. Highly efficient and flexible electrospun carbon-silica nanofibrous membrane for ultrafast gravity-driven oil-water separation[J]. ACS Appl Mater Interfaces, 2014, 6(12):9393-9401. [3] Huang Q X, Mao F Y, Han X, et al. Migration of emulsified water droplets in petroleum sludge during centrifugation[J]. Energy Fuels, 2014, 28(8):4918-4924. [4] Zhang W B, Shi Z, Zhang F, et al. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsifieds with high flux[J]. Adv Mater, 2013, 25(14):2071-2076. [5] Zhu Y Z, Xie W, Zhang F, et al. Superhydrophilic in-situ-cross-linked zwitterionic polyelectrolyte/PVDF-blend membrane for highly efficient oil/water emulsified separation[J]. ACS Appl Mater Interfaces, 2017, 9(11):9603-9613. [6] Zhou X Y, Zhang Z Z, Xu X H, et al. Robust and durable superhydrophobic cotton fabrics for oil/water separation[J]. ACS Appl Mater Interfaces, 2013, 5(15):7208-7214. [7] Feng L, Zhang Z Y, Mai Z H, et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angew Chem Int Ed, 2004, 116(15):2046-2048. [8] Zhang F, Zhang W B, Shi Z, et al. Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation[J]. Adv Mater, 2013, 25(30):4192-4198. [9] Zhang L, Lin Y Q, Wu H C, et al. An ultrathin in situ silicification layer developed by an electrostatic attraction force strategy for ultrahigh-performance oil–water emulsion separation[J]. J Mater Chem A, 2019, 7:24569-24582. [10] 杨思民,王建强,刘富.油水分离膜研究进展[J]. 膜科学与技术, 2019, 39(03):132-141. [11] Zargnami S, Mohammadi T, Sadrzadeh M, et al. Superhydrophilic and underwater superoleophobic membranes-A review of synthesis methods[J]. Prog Polym Sci, 2019, 98:101166. [12] Fan Z Y, Zhao Y L, Zhu X Y, et al. Folic acid modified electrospun poly(vinyl alcohol)/polyethyleneimine nanofibers for cancer cell capture applications[J]. Chin J Polym Sci, 2016, 34(6):755-765. [13] Cheng B W, Li Z J, Li Q X, et al. Development of smart poly(vinylidene fluoride)-graft-poly(acrylic acid) tree-like nanofiber membrane for pH-responsive oil/water separation[J]. J Membr Sci, 2017, 534:1-8. [14] Su C L, Li Y P, Dai Y Z, et al. Fabrication of three-dimensional superhydrophobic membranes with high porosity via simultaneous electrospraying and electrospinning[J]. Mater Lett, 2016, 170:67-71. [15] Ma W j, Zhang Q, Hua D W, et al. Electrospun fibers for oil-water separation[J]. RSC Adv. 2016, 6 (16), 12868-12884. [16] Lee M W, An S, Latthe S S, et al. Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil[J]. ACS Appl Mater Interfaces, 2013, 5(21):10597-10604. [17] Tang Z H, Wei J, Yung L, et al. UV-cured poly(vinyl alcohol) ultrafiltration nanofibrous membrane based on electrospun nanofiber scaffolds[J]. J Membr Sci, 2009, 328(1-2):1-5. [18] Liu Z J, Wang H Y, Wang E Q, et al. Superhydrophobic poly(vinylidene fluoride) membranes with controllable structure and tunable wettability prepared by one-step electrospinning[J]. Polymer, 2016, 82:105-113. [19] Hong S K, Bae S, Jeon H, et al. An underwater superoleophobic nanofibrous cellulosic membrane for oil/water separation with high separation flux and high chemical stability[J]. Nanoscale, 2018, 10:3037-3045. [20] Chakrabarty B, Ghoshal A K, Purkait M K. Ultrafiltration of stable oil-in-water emulsified by polysulfone membrane[J]. J Membr Sci, 2008, 325(1):427-437. [21] Zhang J Q, Pan X L, Xue Q Z, et al. Antifouling hydrolyzed polyacrylonitrile/graphene oxide membrane with spindle-knotted structure for highly effective separation of oil-water emulsified[J]. J Membr Sci, 2017, 532:38-46. [22] Liao Y, Tian, M, Wang R. A high-performance and robust membrane with switchable super-wettability for oil/water separation under ultralow pressure[J]. J Membr Sci, 2017, 543:123-132. [23] Ge J L, Zhang J C, Wang F, et al. Superhydrophilic and underwater superoleophobic nanofibrous membrane with hierarchical structured skin for effective oil-in-water emulsion separation[J]. J Mater Chem A, 2017, 5:497-502. [24] Obaid M, Mohamed H O, Yasin A S, et al. Under-oil superhydrophilic wetted PVDF electrospun modified membrane for continuous gravitational oil/water separation with outstanding flux[J]. Water Res, 2017, 123:524-535. [25] Wang X F, Zhang K, Yang Y, et al. Development of hydrophilic barrier layer on nanofibrous substrate as composite membrane via a facile route[J]. J Membr Sci, 2010, 356(1):110-116. [26] Ge J L, Zong D D, Jin Q, et al. Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsion[J]. Adv Funct Mater, 2018, 28(10):1705051-1705061. [27] Ma W J, Guo Z F, Zhao J T, et al. Polyimide/cellulose acetate core/shell electrospun fibrous membranes for oil-water separation[J]. Sep Purif Technol, 2017, 177:71-85. [28] Liu B C, Chen C, Li T, et al. High performance ultrafiltration membrane composed of PVDF blended with its derivative copolymer PVDF-g-POEGMA[J]. J Membr Sci, 2013, 445:66-75. [29] Hester J F, Banerjee P, Won Y Y, et al. ATRP of amphiphilic graft copolymers based on PVDF and their use as membrane additives[J]. Macromolecules, 2002, 35(20):7652-7661. [30] Wu J D, Ding Y J, Wang J Q, et al. Facile fabrication of nanofiber- and micro/nanosphere-coordinated PVDF membrane with ultrahigh permeability of viscous water-in-oil emulsions[J]. J Mater Chem A, 2018, 6:7014-7020. [31] Pan Y, Zhang L J, Li Z J, et al. Hierarchical porous membrane via electrospinning PIM-1 for micropollutants removal[J]. Appl Surf Sci, 2018, 443:441-451. [32] Cao Z P, Hao T Y, Wang P, et al. Surface modified glass fiber membranes with superior chemical and thermal resistance for O/W separation[J]. Chem Eng J, 2017, 309:30-40. [33] Hester J F, Banerjee P, Mayes A M. Preparation of protein-resistant surfaces on Poly(vinylidene fluoride) membranes via surface segregation[J]. Macromolecules, 1999, 32(5):1643-1650. [34] Li J J, Zhu L T, Luo Z H. Electrospun fibrous membrane with enhanced switchable oil/water wettability for oily water separation[J]. Chem Eng J, 2016, 287:474-481. [35] Fang W Y, Liu L B, Guo G L. Tunable wettability of electrospun polyurethane/silica composite membranes for effective separation of water-in-oil and oil-in-water emulsions[J]. Chem -Eur J, 2017, 23(47):11253-11260. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号