PES/ZnO@rGO共混超滤膜的制备及其性能
作者:朱吉凯,丁长坤,秦茜雯,薛蔓,田盈盈
单位: 天津工业大学 省部共建分离膜与膜过程国家重点实验室,材料科学与工程学院,天津 300387
关键词: 氧化锌;还原氧化石墨烯;聚醚砜;共混膜;光催化;抗污染
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2022,42(2):47-55

摘要:
 采用溶剂热法合成了ZnO为颗粒状形貌的ZnO@rGO复合材料。以N,N-二甲基乙酰胺(DMAc)及N-甲基吡咯烷酮(NMP)为溶剂,聚乙二醇(PEG4000)为致孔剂,采用非溶剂致相分离法(NIPS)制备了聚醚砜(PES)/ZnO@rGO共混超滤膜,研究了ZnO@rGO复合材料的含量对PES共混膜结构与性能的影响。结果表明:PES/ZnO@rGO共混膜的水接触角从纯PES膜的83.7°下降到66.2°,纯水通量达到198.12 L/(m2·h),是纯PES膜纯水通量的4倍,对牛血清蛋白(BSA)的截留率保持在96%以上,通量恢复率从69%增加到88%,抗污染性能较纯PES膜明显提高。共混膜对甲基蓝(MB)的光催化降解效率从68%提高到93%,显示出优异的光催化降解能力。
 In this work, ZnO@rGO composites were synthesized by solvothermal method, in which ZnO was granular morphology. Using N,N-dimethylacetamide (DMAc) and 1-methy1-2-pyrrolidinone (NMP) as solvents, polyethylene glycol (PEG4000) as pore-forming agent, the polythersulfone (PES)/ZnO@rGO blend membranes were prepared by non-solvent phase separation (NIPS) method. The effect of the addition contents of ZnO@rGO on the structure and performance of PES blend membranes was investigated. The results showed that the water contact angles could change from 83.7° of the PES/ZnO@rGO blend membranes to 66.2° of the pure PES membrane to, and the pure water flux of the blend membranes could achieve 198.12 L/(m2·h), which is 4 times larger than that of the pure PES membrane. In addition, the BSA rejection of PES/ZnO@rGO blend membranes is above 96% and the flux recovery rate increased from 69% to 88%, and the anti-fouling performance of the blend membranes could be improved significantly. Furthermore, the photocatalytic activity of PES/ZnO@rGO blend membranes for MB increased from 68% to 93%, showing excellent photocatalytic ability.

基金项目:
天津市中空纤维膜材料与膜过程重点实验室开放课题项目(2021TGUZKXWM2-1)

作者简介:
朱吉凯(1995-),男,河南濮阳市人,硕士生,研究方向为氧化锌/还原氧化石墨烯制备及其聚醚砜膜 性能研究

参考文献:
 [1] Cui X, Zheng Y, Tian M, et al. Palladium nanoparticles supported on SiO2 @Fe3O4 @m-MnO2 mesoporous microspheres as a highly efficient and recyclable catalyst for hydrodechlorination of 2,4-dichlorophenol and reduction of nitroaromatic compounds and organic dye[J]. Mol Catal, 2017, 433:202-211.
[2] Soltani N, Saion E, Hussein M Z, et al. Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles[J]. Int J Mol Sci, 2012, 13(10):12242-12258.
[3] Chandrasekhar M, Nagabhushana H, Vidya Y S, et al. Synthesis of Eu3+-activated ZnO superstructures: Photoluminescence, Judd-Ofelt analysis and Sunlight photocatalytic properties[J]. J Mol Catal A-Chem, 2015, 409:26-41.
[4] Zhang Q, Yu L, Yang B, et al. Magnetic Fe3O4@Ru-doped TiO2 nanocomposite as a recyclable photocatalyst for advanced photodegradation of methylene blue in simulated sunlight[J]. Chem Phys Lett, 2021, 774:138609.
[5] Al-Mamun M R, Kader S, Islam M S, et al. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review[J]. J Environ Chem Eng, 2019, 7:1032485.
[6] Rashid Al-Mamun M, Shofikul Islam M, Rasel Hossain M, et al. A novel and highly efficient Ag and GO co-synthesized ZnO nano photocatalyst for methylene blue dye degradation under UV irradiation[J]. Environ Nanotechnol Monit Manag, 2021, 16:100495.
[7] Balcha A, Yadav O P, Dey T. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods[J]. Environ Sci Pollut Res, 2016, 23(24):25485-25493.
[8] Zhang Y, Zhou J, Chen X, et al. MOF-derived C-doped ZnO composites for enhanced photocatalytic performance under visible light[J]. J Alloy Compd, 2019, 777:109-118.
[9] Rodwihok C, Wongratanaphisan D, Thi Ngo Y L, et al. Effect of GO additive in ZnO/rGO nanocomposites with enhanced photosensitivity and photocatalytic Activity[J]. Nanomaterials, 2019, 9(10):1441.
[10] Wang Z, Zhan X, Wang Y, et al. A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures[J]. Nanoscale, 2012, 4(8):2678-2684.
[11] 赵翔, 鲁建江, 赵颂, 等. 添加剂对聚醚砜超滤膜性能影响研究[J]. 膜科学与技术, 2016, 36(03):33-40.
[12] 曹悦苗, 丁长坤, 杜建华, 等. PES/fMWNT共混超滤膜的制备及其抗污染研究[J]. 塑料工业, 2019, 47(01):17-21.
[13] 赵永军, 李方, 李佳峰, 等. 氧化石墨烯与纳米二氧化钛共混改性PES超滤膜的对比分析[J]. 膜科学与技术, 2016, 36(03):13-20.
[14] Vieira I S, Fatima D, Miranda G, et al. Waterborne poly(urethane-urea)s nanocomposites reinforced with clay, reduced graphene oxide and respective hybrids: synthesis, stability and structural characterization[J]. J Polym Environ, 2020, 28(1):74-90.
[15] Fatemeh B, Elham V, Ahmadzadeh T M, et al. Polyvinyl alcohol/polyethersulfone thin-film nanocomposite membranes with carbon nanomaterials incorporated in substrate for water treatment[J]. J Environ Chem Eng, 2021, 9:104650.
[16] Chen Y, Katsumata K, Chiu Y, et al. ZnO–graphene composites as practical photocatalysts for gaseous acetaldehyde degradation and electrolytic water oxidation[J]. Appl Catal A-Gen, 2015,490:1-9.
[17] Li D, Zhang B, Xuan F. The sequestration of Sr(II) and Cs(I) from aqueous solutions by magnetic graphene oxides[J]. J Mol Liq, 2015, 209(2):508-514.
[18] Zhang P, Xiang S, Wang H, et al. Understanding the multiple functions of styrene-co-maleic anhydride in fabricating polyvinylidene fluoride hollow fiber membrane via coupled phase inversion process and its effect on surface infiltration behavior and membrane permeability[J]. J Membr Sci,2019,590:117269.
[19] 刘亚品. PSf-b-PEG分离膜的制备与孔结构调控机制研究[D]. 天津工业大学, 2021.
[20] Li X, Cui Z, Li J, et al. Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation[J]. Desalination, 2015, 369: 26-36.
[21] Rodwihok C, Wongratanaphisan D, Thi Ngo Y L, et al. Effect of GO additive in ZnO/rGO nanocomposites with enhanced photosensitivity and photocatalytic activity[J]. Nanomaterials, 2019,9(10):1441.
[22] Wu G, Gan S, Cui L, et al. Preparation and characterization of PES/TiO2 composite membranes[J]. Appl Surf Sci, 2008, 254(21):7080-7086.
[23] Vatanpour V, Madaeni S S, Moradian R, et al. Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite[J]. J Membr Sci, 2011, 375(1):284-294.
[24] 步肖曼, 张守海, 薛仁东, 等. 聚醚砜与杂萘联苯共聚醚砜共混超滤膜的制备[J]. 膜科学与技术, 2018, 38(06):56-62.
[25] 秦爱文, 杨炎福, 何云龙, 等. 海泡石改性聚醚砜膜的制备及性能[J]. 膜科学与技术, 2020, 40(05): 70-6.
[26] Hu M Y, Yang S Q, Liu X W, et al. Selective separation of dye and salt by PES/SPSf tight ultrafiltration membrane: Roles of size sieving and charge effect[J]. Sep Purif Technol, 2021, 266(10).
[27] Sert B, Ozay Y, Harputlu E, et al. Improvement in performance of g-C3N4 nanosheets blended PES ultrafiltration membranes including biological properties[J]. Colloids Surf A, 2021, 623.
[28] Heidari A, Abdollahi E, Mohammadi T, et al. Improving permeability, hydrophilicity and antifouling characteristic of PES hollow fiber UF membrane using carboxylic PES: A promising substrate to fabricate NF layer[J]. Sep Purif Technol, 2021, 270(12).
[29] 欧阳赣, 蔡文倍, 李登新. Co3O4-GO/PES共混超滤膜的制备及催化清洗性能[J]. 膜科学与技术, 2016, 36(02): 34-40.
[30] Wang W, Shi Y P, Zhang P, et al. Fabrication of an antifouling GO-TiO2/PES ultrafiltration membrane[J]. J Appl Polym Sci, 2021, 138(39): 11.
[31] Li J J, Wu Y B, Li B N, et al. Enhanced hydrophilicity and antifouling performance of PES-C/emodin ultrafiltration membrane[J]. High Perform Polym, 2021, 12.
[32] 武晓, 姚勇, 张敏敏, 等. 纳米TiO2/聚醚砜复合膜的制备及其性能研究[J]. 塑料工业, 2018, 46(02): 58-61+75.
[33] Amiri S, Asghari A, Vatanpour V, et al. Fabrication of chitosan-aminopropylsilane graphene oxide nanocomposite hydrogel embedded PES membrane for improved filtration performance and lead separation[J]. J Envir Manage, 2021, 294.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号