高性能碟式陶瓷膜在油水乳液分离中的研究 |
作者:刘光华,常启兵,何世斌,杨玉龙,鲍志蕾,章文杰,郝恩奇,汪永清 |
单位: 1.景德镇陶瓷大学 材料科学与工程学院,江西省高校无机膜重点实验室,景德镇 333000; 2.重庆兀盾纳米科技有限公司,重庆 402460 |
关键词: 碟式陶瓷膜;动态过滤;膜污染;油水乳液分离 |
DOI号: |
分类号: TQ 028.8 |
出版年,卷(期):页码: 2022,42(2):72-77 |
摘要: |
为解决膜分离技术处理油水乳液所遇到的膜污染问题,本文选择碟式陶瓷膜,采用动态过滤方式,研究了跨膜压差、膜转速和进料液温度对处理油水乳液的渗透通量和截留率的影响。结果表明:使用平均孔径为100 nm的碟式陶瓷膜处理油质量浓度为1000 mg/L的油水乳化液,当进料液温度为30 ℃、膜旋转速度为365 r/min、跨膜压差为0.02 MPa的操作条件下,碟式陶瓷膜的稳定通量达8700 L/(m2·h·MPa),截留率达99.9%。与相同孔径的管式陶瓷膜比较,碟式陶瓷膜的渗透通量提升3~5倍。这表明碟式陶瓷膜动态过滤系统能够实现油水乳液的低能耗和高效率处理,为油水乳液的处理提供了一种新的途径。 |
To solve the problem of membrane fouling in the treatment of oil-in-water emulsions by membrane separation technology. The dynamic filtration method with disk ceramic membrane (pore size of 100 nm) was used to explore the effect of TMP, membrane speed and feed temperature on permeation flux and rejection rate of oil-in-water emulsions. The results show that the stable permeation flux of the disk ceramic membrane was obtained of 8700 L/ (m2·h·MPa) under the operating conditions of feed temperature of 30 ℃, membrane rotation speed of 365 r/min and TMP of 0.02 MPa. When the oil-in-water emulsions with an oil concentration of 1000 mg/L, the rejection rate of 99.9%. Compared with the tubular ceramic membrane with the same pore size, the permeation flux of the disk ceramic membrane is increased by 3~5 times. This indicated that the dynamic ceramic membrane filtration system can realize the low energy consumption and high efficiency of oil-in-water emulsions treatment, and provide a new way for the treatment of oil-in-water emulsions. |
基金项目: |
国家自然科学基金(21761015);江西省研究生创新专项资金项目(YC2020-S420) |
作者简介: |
刘光华(1995-),男,江西吉安人,硕士,从事碟式陶瓷膜的制备及其应用研究。 |
参考文献: |
[1] Rasouli S, Rezaei N, Hamedi H, et al. Superhydrophobic and superoleophilic membranes for oil-water separation application: A comprehensive review [J]. Materials & Design, 2021, 204: 109599. [2] 汪祺, 邓雪松, 郑甜甜, 等. 仿蜘蛛网结构油水分离膜的制备和性能探索 [J]. 膜科学与技术, 2021, 41(2): 9-17+40. [3] 赵亚辉, 胡志伟, 王一鸣,等. 喷涂-浸涂结合法制备高渗透通量平板陶瓷超滤膜 [J]. 膜科学与技术, 2019, 39(6): 16-20. [4] Dong S, Kim E-S, Alpatova A, et al. Treatment of oil sands process-affected water by submerged ceramic membrane microfiltration system [J]. Sep Purif Technol, 2014, 138: 198-209. [5] Tummons E, Han Q, Tanudjaja H J, et al. Membrane fouling by emulsified oil: A review [J]. Sep Purif Technol, 2020, 248: 116919. [6] Harscoat C, Jaffrin M Y, Bouzerar R, et al. Influence of fermentation conditions and microfiltration processes on membrane fouling during recovery of glucuronane polysaccharides from fermentation broths [J]. Biotechnol Bioeng, 1999, 65(5): 500-511. [7] Ding L, Jaffrin M Y, Luo J. Dynamic filtration with rotating disks, and rotating or vibrating membranes [M]. Progress in Filtration and Separation, New York: Academic Press, 2015:27-59. [8] Jaffrin M Y. Dynamic shear-enhanced membrane filtration: A review of rotating disks, rotating membranes and vibrating systems [J]. J Membr Sci, 2008, 324(1-2): 7-25. [9] Jaffrin M Y. Dynamic filtration with rotating disks, and rotating and vibrating membranes: an update [J]. Curr Opin Chem Eng, 2012, 1(2): 171-177. [10] Moulai-Mostefa N, Akoum O, Nedjihoui M, et al. Comparison between rotating disk and vibratory membranes in the ultrafiltration of oil-in-water emulsions [J]. Desalination, 2007, 206(1-3): 494-498. [11] Li L, Ding L, Tu Z, et al. Recovery of linseed oil dispersed within an oil-in-water emulsion using hydrophilic membrane by rotating disk filtration system [J]. J Membr Sci, 2009, 342(1-2): 70-79. [12] Bouzerar R. Local permeate flux–shear–pressure relationships in a rotating disk microfiltration module: implications for global performance [J]. J Membr Sci, 2000, 170(1): 127-141. [13] Darvishzadeh T, Priezjev N V. Effects of crossflow velocity and transmembrane pressure on microfiltration of oil-in-water emulsions [J]. J Membr Sci, 2012, 423-424: 468-476. [14] 陈俐. 多孔SiC陶瓷膜的制备与废水处理性能的表征 [J]. 功能材料, 2020, 51(12): 12204-12208. [15] Chang Q, Zhou J-e, Wang Y, et al. Application of ceramic microfiltration membrane modified by nano-TiO2 coating in separation of a stable oil-in-water emulsion [J]. J Membr Sci, 2014, 456: 128-133. [16] Zhu L, Chen M, Dong Y, et al. A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion [J]. Water Res, 2016, 90: 277-285. [17] Salahi A, Gheshlaghi A, Mohammadi T, et al. Experimental performance evaluation of polymeric membranes for treatment of an industrial oily wastewater [J]. Desalination, 2010, 262(1-3): 235-242. [18] Ahmad A L, Majid M A, Ooi B S. Functionalized PSf/SiO2 nanocomposite membrane for oil-in-water emulsion separation [J]. Desalination, 2011, 268(1-3): 266-269. [19] Rashad M, Logesh G, Sabu U, et al. A novel monolithic mullite microfiltration membrane for oil-in-water emulsion separation [J]. J Membr Sci, 2021, 620: 118857. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号