含薄荷酯的手性共轭微孔聚合物混合基质膜的制备及其对映体拆分性能 |
作者:谢禹杰,藏雨,王建军,徐亮,张转芳,黄媛,崔嘉,雷天阳,荆博宇,苗凤娟 |
单位: 1.齐齐哈尔大学材料科学与工程学院,黑龙江 齐齐哈尔 161006;2.齐齐哈尔大学分析测试中心,黑龙江 齐齐哈尔 161006;3.齐齐哈尔大学通信与电子工程学院,黑龙江 齐齐哈尔 161006 |
关键词: 薄荷酯;共轭微孔聚合物;混合基质膜;对映体分离 |
DOI号: |
分类号: TQ317;TQO28.8 |
出版年,卷(期):页码: 2022,42(2):78-88 |
摘要: |
采用“自下而上”策略,成功合成了2种含薄荷酯的手性共轭微孔聚合物(CCMP)。以CCMP为分散相,醋酸纤维素(CA)、乙基纤维素(EC)为基质,采用相转换法,制备了3种混合基质膜。扫描电子显微镜显示,CCMP在基质中分散均匀。在氨基酸外消旋体的对映体分离时,当分散相CDCMP-1质量分数为4%,混合基质膜对(D,L)-苯丙氨酸的透过率为7.75×10-9 m2/h,对映体过量为60.6%ee,表现出较高的对映体分离性能。 |
In this paper, two kinds of chiral conjugated microporous polymers (CCMP) containing menthol esters were successfully synthesized by the "bottom-up" strategy. Using CCMP as dispersed-phase, cellulose acetate (CA) and ethyl cellulose (EC) as substrates, three mixed-matrix membranes were prepared by phase conversion method.Scanning electron microscopy showed that CCMP was evenly dispersed in the matrix.When the mass fraction of CDCMP-1 was 4%, the permeability of (D,L) -phenylalanine was 7.75×10-9 m2/h, and the excess of enantiomer was 60.6% ee, showing high enantiomer separation performance. |
基金项目: |
国家自然科学基金(52173202);2019黑龙江省省属本科高校基本科研业务费青年创新人才项目(135409201);黑龙江省自然科学基金(JQ20197003,ZD20197004) |
作者简介: |
谢禹杰(1997-),男,河南省洛阳市,硕士研究生在读,研究方向为分离功能高分子膜 |
参考文献: |
[1] Shen J, Okamoto Y. Efficient separation of enantiomers using stereoregular chiral polymers[J]. Chem Rev, 2016, 116(3):1094-1138. [2] Navarrosanchez J, Argentegarcia A, Molinermartinez Y, et al. Peptide metal-organic frameworks for enantioselective separation of chiral drugs[J]. Chem Soc, 2017, 139(12):4294-4297. [3] Gao B, Li Y, Cui K, et al. Molecularly imprinted membrane with innovative structure and high performance for chiral separation of amino acids[J]. Int J Polym Mater, 2018, 67(8): 517-527. [4] Zhan S, Chen X, Sun L, et al. β-Cyclodextrin self-assembled nanochannel membrane for separation of chiral drugs[J]. ACS Appl Nano Mater, 2020, 3(5):4351-4356. [5] Gu L, Chen Q, Li X, et al. Amino acid modified carbon nanotubes with optimal pore size for chiral separation[J]. Mol Simulat, 2019, 45(13):1051-1057. [6] Wang X, Lu S, Li J, et al. Conjugated microporous polymers with chiral BINAP ligand built-in as efficient catalysts for asymmetric hydrogenation[J]. Catal Sci Technol, 2015, 5:2585-2589. [7] Xie R, Chu L, Deng J, et al. Membranes and membrane processes for chiral resolution[J]. Chem Soc Rev, 2008, 37:1243-1263. [8]袁黎明, 手性固膜研究中面临的挑战[J]. 膜科学与技术, 2012, 32(6), 6:1-7. [9] Lee N, Frank C. Separation of chiral molecules using polypeptide-modified poly(vinylidene fluoride) membranes[J]. Polymer, 2002, 43(23):6255-6262. [10]袁黎明, 何红星, 查欣,等. 替考拉宁手性膜拆分对羟基苯甘氨酸的研究[J]. 膜科学与技术, 2017, 37(3): 81-84. [11] Liu L, Xu Z, Zhang Y, et al. Preparation and chiral resolution performance of S-ibuprofen molecularly imprinted membranes[J]. Polym Eng Sci, 2012, 28(12):159-163. [12] Yuan L, Ma W, Xu M, et al. Optical resolution and mechanism using enantioselective cellulose, sodium alginate and hydroxypropyl-β-cyclodextrin membranes[J]. Chirality, 2017, 29:315-324. [13] Lee J, Cooper A. Advances in conjugated microporous polymers[J]. Chem Rev, 2020, 4:2171-2214. [14] Lei L, Pan F, Lindbrthen A, et al. Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation[J]. Nat Commun, 2021, 12(1):268. [15] Chaoui N, Trunk M, Dawson R, et al. Trends and challenges for microporous polymers[J]. Chem Soc Rev, 2017, 46:3302-3321. [16] Wang D, Liang Z, Gao S, et al. Metal-organic framework-based materials for hybrid supercapacitor application[J]. Coordin Chem Rev, 2020, 404(c):213093. [17] Gong J, Lin R, Chen B, et al. Conjugated microporous polymers with rigid backbones for organic solvent nanofiltration[J]. Chem, 2018, 10: 2269-2271. [18] Polak-Krana K, Tian M, Rochat S, et al. Solvent sorption-induced actuation of composites based on a polymer of intrinsic microporosity[J]. Acs Appl Polym Mat, 2021, 3(2):920-928. [19] Wang H, Zeng Z, Xu P, et al. Recent progress in covalent organic framework thin films: fabrications, applications and perspectives[J]. Chem Soc Rev, 2019, 48:488-516. [20]Lu Y, Zhang H, Chan J, et al. Homochiral MOF-polymer mixed matrix membranes for efficient separation of chiral molecules[J]. Angew Chem, 2019, 131(47):16928-16935. [21] Yang P, Li Z, Gao Z, et al. Solvent-free crystallization of zeolitic imidazolate framework membrane via layer-by-layer deposition[J]. Acs Sustain Chem Eng, 2019, 7(4):4158-4164. [22]艾萍, 张紫恒, 袁黎明. 金属-有机骨架材料[Zn2Camph2(dabco)]·DMF·H2O 作为手性选择剂的高分子膜及其应用研究[J]. 膜科学与技术, 2018, 38(5):84-88. [23] Liang B, Wang H, Shi X, et al. Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration[J]. Nat Chem, 2018, 10:961-967. [24] Huang Y, Zang Y, Xu L, et al. Synthesis of chiral conjugated microporous polymer composite membrane and improvements in permeability and selectivity during enantioselective permeation[J]. Sep Purif Technol, 2021, 266: 118529. [25] 章慧, 颜建新, 吴舒婷,等.对固体圆二色光谱测试方法的再认识——兼谈“浓度效应”[J].物理化学学报, 2013, 29(12):2481-2497. [26] Liang B, Wang H, Shi X, et al. Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration[J]. Nat Chem, 2018, 10(9) : 961-967. [27]翟燕, 胡洋, 梁淑君. MOF-5/PI混合基质膜成膜性的研究[J]. 山西化工, 2016, 36(2):9-11+42. [28]Monti G, Rajiv G, Swapnali H, et al. Selective permeation of L-tyrosine through functionalized single-walled carbon nanotube thin film nanocomposite membrane[J]. Sep Purif Technol, 2020, 233(C) : 116061-116061. [29]袁黎明,苏莹秋,段爱红,等. 万古霉素手性膜拆分D,L-苯甘氨酸及手性拆分机理[J].高等学校化学学报, 2016, 37(11):1960-1965. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号