主链结构对阴离子交换膜碱稳定性的影响 |
作者:王雪,李永纲,郑吉富,张所波,李胜海 |
单位: 1.中国科学院 长春应用化学研究所 中国科学院生态环境高分子材料重点实验室,长春 130022;2.中国科学技术大学 应用化学与工程学院,合肥 230026 |
关键词: 碱性阴离子交换膜燃料电池;阴离子交换膜;聚合物主链结构;碱稳定性 |
DOI号: |
分类号: TQ13;TM911.48 |
出版年,卷(期):页码: 2022,42(2):117-127 |
摘要: |
碱性阴离子交换膜燃料电池(AAEMFCs)可使用低成本的非Pt催化剂,具有反应高效及环境友好等优点,因可在一定程度上取代质子交换膜燃料电池(PEMFCs)而备受关注。阴离子交换膜(AEMs)作为AAEMFCs的核心部件,需要兼备优异的OH-传输性能、机械性能、热稳定性及碱稳定性等。但目前AEMs仍面临的巨大挑战是耐碱性较差,不能够大规模商业化应用。本文重点综述了聚合物主链结构对AEMs的碱稳定性的影响,分析总结了碱性环境下AEMs主链的降解机理及提高碱稳定性的解决思路,并对未来可能的发展方向进行了展望。 |
Alkaline anion exchange membrane fuel cells (AAEMFCs) can use low-cost non-PT catalysts, and have the advantages of high reaction efficiency and environmental friendliness. AAEMFCs can replace proton exchange membrane fuel cells (PEMFCs) to some extent, which has attracted much attention. As the core component of AAEMFCs, anion exchange membrane (AEMs) requires excellent OH- transport performance, mechanical properties, thermal stability and alkaline stability. However, AEMs is still faced with the great challenge of poor alkaline resistance, which can not be used in large-scale commercial applications. In this paper, the influence of the polymerization backbone structures on the alkaline stability of AEMs was reviewed, the degradation mechanism and solution of AEMs in alkaline environment were analyzed and summarized, and the possible development direction of AEMs in the future was prospected. |
基金项目: |
国家自然科学基金项目(21774213)、吉林省科技发展计划项目(20200801051GH) |
作者简介: |
王雪(1997-),女,河北邢台人,在读硕士生,主要从事膜材料的制备与性能方向的研究 |
参考文献: |
[1] 张宏伟, 周震涛. 燃料电池聚合物电解质膜 [J]. 化学进展, 2008, (4): 602-619. [2] Liu Y Z, Ding L, Liu J, et al. Polyphenylene oxide based ion exchange membranes for fuel cells [J]. Acta Polym Sin, 2018, (7): 797-813. [3] 薛博欣. 耐碱型有机阳离子的分子结构设计及阴离子交换膜制备 [D]. 中国科学技术大学, 2020. [4] Arges C G, Ramani V. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes [J]. Proc Natl Acad Sci U S A, 2013, 110(7): 2490-2495. [5] Miyanishi S, Yamaguchi T. Ether cleavage-triggered degradation of benzyl alkylammonium cations for polyethersulfone anion exchange membranes [J]. Phys Chem Chem Phys, 2016, 18(17): 12009-12023. [6] Mohanty A D, Tignor S E, Krause J A, et al. Systematic Alkaline stability study of polymer backbones for anion exchange membrane applications [J]. Macromolecules, 2016, 49(9): 3361-3372. [7] 司江菊, 卢善富, 相艳. 燃料电池用碱性阴离子交换膜链结构调控研究进展 [J]. 科学通报, 2019, 64(2): 153-164. [8] Choe Y K, Fujimoto C, Lee K S, et al. Alkaline stability of benzyl trimethyl ammonium functionalized polyaromatics: A computational and experimental study [J]. Chem Mater, 2014, 26(19): 5675-5682. [9] Pan J, Lu S F, Li Y, et al. High-Performance alkaline polymer electrolyte for fuel cell applications [J]. Adv Funct Mater, 2010, 20(2): 312-319. [10] Wang C, Tao Z, Zhou Y, et al. Anion exchange membranes with eight flexible side-chain cations for improved conductivity and alkaline stability [J]. Sci China Mater, 2020, 63(12): 2539-2550. [11] 李苏. 季铵化聚芳醚砜阴离子交换膜的结构与性能研究 [D]. 吉林大学, 2020. [12] Li S, Pang J H, Chen Z, et al. A high-performance anion exchange membrane based on poly(arylene ether sulfone) with a high concentration of quaternization units [J]. J Membr Sci, 2019, 589: 117266. [13] Li S, Zhang H B, Wang K Q, et al. Micro-block versus random quaternized poly(arylene ether sulfones) with highly dense quaternization units for anion exchange membranes [J]. Polym Chem, 2020, 11(13): 2399-2407. [14] Sun H, Zhang G, Liu Z, et al. Self-crosslinked alkaline electrolyte membranes based on quaternary ammonium poly (ether sulfone) for high-performance alkaline fuel cells [J]. Intl Journal of Hydrogen Energy, 2012, 37(12): 9873-9881. [15] Zhang Y, Chen W T, Yan X M, et al. Ether spaced N-spirocyclic quaternary ammonium functionalized crosslinked polysulfone for high alkaline stable anion exchange membranes [J]. J Membr Sci, 2020, 598: 117650. [16] Lee K H, Cho D H, Kim Y M, et al. Highly conductive and durable poly(arylene ether sulfone) anion exchange membrane with end-group cross-linking [J]. Energy Environ Sci, 2017, 10(1): 275-285. [17] Yan X M, He G H, Gu S, et al. Quaternized poly(ether ether ketone) hydroxide exchange membranes for fuel cells [J]. J Membr Sci, 2011, 375(1-2): 204-211. [18] Zhang F, Li T, Chen W, et al. Electron-donating C-NH2 link backbone for highly alkaline and mechanical stable anion exchange membranes [J]. ACS Appl Mater Interfaces, 2021, 13(8): 10490-10499. [19] Zhang F, Li T, Chen W, et al. Highly stable electron-withdrawing CO link-free backbone with branched cationic side chain as anion exchange membrane [J]. J Membr Sci, 2021, 624: 119052. [20] Liu D, Lin L, Xie Y, et al. Anion exchange membrane based on poly(arylene ether ketone) containing long alkyl densely quaternized carbazole derivative pendant [J]. J Membr Sci, 2021, 623: 119079. [21] 李名卉. 燃料电池用咪唑化聚醚醚酮阴离子交换膜的制备与研究 [D]. 长春工业大学, 2018. [22] Li Q, Liu L, Miao Q Q, et al. A novel poly(2,6-dimethyl-1,4-phenylene oxide) with trifunctional ammonium moieties for alkaline anion exchange membranes [J]. Chem Commun, 2014, 50(21): 2791-2793. [23] He Y, Ge X, Liang X, et al. Anion exchange membranes with branched ionic clusters for fuel cells [J]. J Mater Chem A, 2018, 6(14): 5993-5998. [24] Zhu Y, Ding L, Liang X, et al. Beneficial use of rotatable-spacer side-chains in alkaline anion exchange membranes for fuel cells [J]. Energy Environ Sci, 2018, 11(12): 3472-3479. [25] Hossain M M, Wu L, Liang X, et al. Anion exchange membrane crosslinked in the easiest way stands out for fuel cells [J]. J Pow Sour, 2018, 390: 234-241. [26] Lee S B, Min C M, Jang J, et al. Enhanced conductivity and stability of anion exchange membranes depending on chain lengths with crosslinking based on poly (phenylene oxide) [J]. Polymer, 2020, 192: 112331. [27] Pandey T P, Sarode H N, Yang Y T, et al. A highly hydroxide conductive, chemically stable anion exchange membrane, poly(2,6 dimethyl 1,4 phenylene oxide)-b-poly(vinyl benzyl trimethyl ammonium), for electrochemical applications [J]. J Electrochem Soc, 2016, 163(7): H513-H20. [28] Li Z Q, Yu R M, Liu C, et al. Preparation and characterization of side-chain poly(aryl ether ketone) anion exchange membranes by superacid-catalyzed reaction [J]. Polymer, 2021, 222, 123639. [29] Hibbs M R, Fujimoto C H, Cornelius C J. Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells [J]. Macromolecules, 2009, 42(21): 8316-8321. [30] Hibbs M R. Alkaline stability of poly(phenylene)-based anion exchange membranes with various cations [J]. J Polym Sci Part B: Polym Phys, 2013, 51(24): 1736-1742.. [31] Park E J, Maurya S, Hibbs M R, et al. Alkaline stability of quaternized diels-alder polyphenylenes [J]. Macromolecules, 2019, 52(14): 5419-5428. [32] Park E J, Kim Y S. Quaternized aryl ether-free polyaromatics for alkaline membrane fuel cells: Synthesis, properties, and performance - a topical review [J]. J Mater Chem A, 2018, 6(32): 15456-15477. [33] Sui Y, Hu H, Ueda M, et al. Mechanically robust poly vinyl-(4-benzyl-N, N, N-trimethylammonium bromide) ketone /polybenzimidazole blend membranes for anion conductive solid electrolytes [J]. J Membr Sci, 2019, 572: 262-270. [34] Henkensmeier D, Cho H R, Kim H J, et al. Polybenzimidazolium hydroxides - Structure, stability and degradation [J]. Polym Degrad Stab, 2012, 97(3): 264-272. [35] Thomas O D, Soo K, Peckham T J, et al. Anion conducting poly(dialkyl benzimidazolium) salts [J]. Polym Chem, 2011, 2(8): 1641-1643. [36] Thomas O D, Soo K, Peckham T J, et al. A stable hydroxide-conducting polymer [J]. J Am Chem Soc, 2012, 134(26): 10753-10756. [37] Wright A G, Holdcroft S. Hydroxide-stable ionenes [J]. Acs Macro Letters, 2014, 3(5): 444-447. [38] Ma H, Zhu H, Wang Z. Highly alkaline stable anion exchange membranes from nonplanar polybenzimidazole with steric hindrance backbone [J]. J Polym Sci Part A: Polym Chem, 2019, 57(10): 1087-1096. [39] Long H, Pivovar B. Hydroxide degradation pathways for imidazolium cations: A DFT study [J]. J Phys Chem C, 2014, 118(19): 9880-9888. [40] Fan J T, Wright A G, Britton B, et al. Cationic polyelectrolytes, stable in 10 M KOHaq at 100 degrees C [J]. Acs Macro Letters, 2017, 6(10): 1089-1093. [41] Fan J, Willdorf C S, Schibli E M, et al. Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability [J]. Nat Commun, 2019, 10(1): 2306. [42] Dong J, Yu N, Che X, et al. Cationic ether-free poly(bis-alkylimidazolium) ionene blend polybenzimidazole as anion exchange membranes [J]. Polym Chem, 2020, 11(37): 6037-6046. [43] Lee W H, Kim Y S, Bae C. Robust hydroxide ion conducting poly(biphenyl alkylene)s for alkaline fuel cell membranes [J]. ACS Macro Letters, 2015, 4(8): 814-818. [44] Lee W H, Park E J, Han J, et al. Poly(terphenylene) anion exchange membranes: The effect of backbone structure on morphology and membrane property [J]. ACS Macro Letters, 2017, 6(5): 566-570. [45] Zhu H, Sun Z, Cao H, et al. Highly conductive and dimensionally stable anion exchange membranes based on poly(dimethoxybenzene-co-methyl 4-formylbenzoate) ionomers [J]. Macromolecules, 2021, 54(12): 5557-5566. [46] Olsson J S, Pham T H, Jannasch P. Poly(arylene piperidinium) hydroxide ion exchange membranes: Synthesis, alkaline stability, and conductivity [J]. Adv Funct Mater, 2018, 28(2): 1702758. [47] Wang J, Zhao Y, Setzler B P, et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells [J]. Nat Energy, 2019, 4(5): 392-398. [48] Chen N, Hu C, Wang H H, et al. Poly(alkyl-terphenyl piperidinium) ionomers and membranes with an outstanding alkaline-membrane fuel-cell performance of 2.58 W cm(-2) [J]. Angew Chem Int Ed Engl, 2021, 60(14): 7710-7718. [49] Yang K, Chu X, Zhang X, et al. The effect of polymer backbones and cation functional groups on properties of anion exchange membranes for fuel cells [J]. J Membr Sci, 2020, 603: 118025. [50] Yang K, Li X F, Guo J, et al. Preparation and properties of anion exchange membranes with exceptional alkaline stable polymer backbone and cation groups [J]. J Membr Sci, 2020, 596: 117720. [51] Chen N, Wang H H, Kim S P, et al. Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells [J]. Nat Commun, 2021, 12(1): 2367. [52] 黄圣梅. 燃料电池用交联型聚降冰片烯基碱性阴离子交换膜的结构与性能调控 [D]. 南昌大学, 2020. [53] 刘磊, 褚晓萌, 李南文. 碱性燃料电池用聚烯烃类阴离子交换膜的研究进展 [J]. 科学通报, 2019, 64(2): 123-133. [54] Zhang M, Shan C, Liu L, et al. Facilitating anion transport in polyolefin-based anion exchange membranes via bulky side chains [J]. ACS Appl Mater Interfaces, 2016, 8(35): 23321-23330. [55] Xiao L C, Qin W X, Ning H E, et al. Quaternized triblock polymer anion exchange membranes with enhanced alkaline stability [J]. J Membr Sci, 2017, 541: 358-366. [56] Zhao Y, Feng L, Gao J, et al. Study on tunable crosslinking anion exchange membranes fabrication and degradation mechanism [J]. Int J Hydrogen Energy, 2016, 41(36): 16264-16274. [57] Mandal M, Huang G, Hassan N U, et al. Poly(norbornene) anion conductive membranes: Homopolymer, block copolymer and random copolymer properties and performance [J]. J Mater Chem A, 2020, 8(34): 17568-17578. [58] Chen W, Mandal M, Huang G, et al. Highly conducting anion-exchange membranes based on cross-linked poly(norbornene): Ring opening metathesis polymerization [J]. ACS Appl Energy Mater, 2019, 2(4): 2458-2468. [59] 李盼. 聚乙烯醇均相阴离子交换膜的合成与性能研究 [D]. 重庆大学, 2019. [60] Yuan C, Li P, Zeng L, et al. Poly(vinyl alcohol)-based hydrogel anion exchange membranes for alkaline fuel cell [J]. Macromolecules, 2021, 54(17): 7900-7909. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号