CHA型分子筛膜的研究进展 |
作者:李璘喆,杨建华 |
单位: 大连理工大学 精细化工国家重点实验室 吸附与无机膜研究所,大连 116012 |
关键词: 分子筛膜;菱沸石;膜分离;硅铝比 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2022,42(2):138-145 |
摘要: |
膜分离技术以其分离效率高、能耗低、无污染、操作条件灵活等优势吸引了研究者和工业界的极大兴趣。CHA型沸石分子筛是重要的催化剂、吸附剂,也是优异的理想分离膜材料。本文重点介绍了CHA型沸石膜在气体分离领域和有机溶剂脱水领域的最新研究进展与动态,总结了硅铝型CHA膜和磷铝型CHA膜在分离领域中各自的优势与特点,提出了制备高性能CHA 分子筛膜的关键在于对CHA分子筛膜层硅铝比的可控调节,最后对CHA膜研究的未来发展方向进行了展望。 |
Membrane-based separation technology has attracted great interest from researchers, which was attributed to its advantages such as high separation efficiency, low energy consumption, and flexible operating conditions. Chabazite is not only an important catalyst and adsorbent, but also an excellent material for membrane separation. In this paper, the framework structure, physical properties and chemical properties of CHA zeolite were briefly reviewed. The latest advances and prospect of CHA zeolite membrane in the field of gas separation and organic solvent dehydration were mainly addressed. We summarized the advantages and characteristics of aluminosilicate-type and phosphoaluminate-type CHA membrane for separation. It is pointed out that the key to prepare CHA membrane with high performance lies in the controlled adjustment of the Si/Al ratio of CHA zeolite membrane. On this basis, the future development of CHA membrane research was prospected. |
基金项目: |
国家自然科学基金项目(21776032)资助。 |
作者简介: |
李璘喆(1995-),男,黑龙江省依兰县,硕士研究生,研究方向为微孔分子筛膜的制备与应用 |
参考文献: |
[1] 王金渠, 杨建华, 李华征, 等. 沸石分子筛膜研究进展[J]. 膜科学与技术, 2014, 34(3): 1-7. [2] Chen W, Gu Z, Ran G, et al. Application of membrane separation technology in the treatment of leachate in China: A review[J]. Waste Management, 2021, 121: 127-140. [3] Wenten I G, Khoiruddin K, Mukti R R, et al. Zeolite membrane reactors: From preparation to application in heterogeneous catalytic reactions[J]. Reaction Chemistry & Engineering, 2021, 6(3): 401-417. [4] Liang J, Shan G, Sun Y. Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110707. [5] Güntner A T, Abegg S, Wegner K, et al. Zeolite membranes for highly selective formaldehyde sensors[J]. Sensors and Actuators B: Chemical, 2018, 257: 916-923. [6] Wu T, Shu C, Liu S, et al. Separation performance of Si-CHA zeolite membrane for a binary H2/CH4 mixture and ternary and quaternary mixtures containing impurities[J]. Energy & Fuels, 2020, 34(9): 11650-11659. [7] García Ruiz M, Aguilar Pliego J, Márquez Álvarez C, et al. MTO synthesis and characterization of ZnAPO-34 and SAPO-34: Effect of Zn on the acidity and catalytic activity in the MTO reaction[J]. Journal of the Mexican Chemical Society, 2021, 65(1): 61-73. [8] Debost M, Klar P B, Barrier N, et al. Synthesis of discrete CHA zeolite nanocrystals without organic templates for selective CO2 capture[J]. Angewandte Chemie, 2020, 132(52): 23697-23701. [9] Zhang J, Liang J, Peng H, et al. Cost-effective fast-synthesis of Chabazite zeolites for the reduction of NOx[J]. Applied Catalysis B: Environmental, 2021, 292:120163. [10] Li Z, Zhang J, Zou X, et al. Synthesis and gas separation of chabazite zeolite membranes[J]. Journal of Inorganic Materials, 2021, 36(6): 579-591. [11] Han L, Yan X, Guo L, et al. Ionothermal synthesis of triclinic SAPO-34 zeolites[J]. Catalysts, 2021, 11(5): 616. [12] Parnham E R, Morris R E. 1-Alkyl-3-methyl imidazolium bromide ionic liquids in the ionothermal synthesis of aluminium phosphate molecular sieves[J]. Chemistry of Materials, 2006,18(20):4882-4887. [13] Li K, Tian Z J, Li X, et al. Ionothermal synthesis of aluminophosphate molecular sieve membranes through substrate surface conversion[J]. Angewandte Chemie International Edition, 2012, 51(18): 4397-4400. [14] 周亮. 小孔沸石分子筛膜的制备, 表征及渗透性能研究[D]. 大连:大连理工大学, 2015. [15] Zhou Z, Nair S. Zeolite DDR nanoparticles: US, 13/396,411[P]. 2012-02-14. [16] Zhou L, Yang J, Li G, et al. Highly H2 permeable SAPO-34 membranes by steam-assisted conversion seeding[J]. International Journal of Hydrogen Energy, 2014, 39(27): 14949-14954. [17] Hye K Y, Kiang C, Benjamin E, et al. Krypton-xenon separation properties of SAPO-34 zeolite materials and membranes[J]. AIChE Journal, 2017, 63(2): 761-769. [18] Kwon Y H, Min B, Yang S, et al. Ion-exchanged SAPO-34 membranes for krypton–xenon separation: Control of permeation properties and fabrication of hollow fiber membranes[J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6361-6368. [19] Jiang J, Dong Q, Zhou F, et al. Gel-modulated growth of high-quality zeolite membranes[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26095-26100. [20] Tang X, Zhang Y, Meng D, et al. Fast synthesis of thin SSZ-13 membranes by a hot-dipping method[J]. Journal of Membrane Science, 2021, 629: 119297. [21] Zhu M, Liang L, Wang H, et al. Influences of acid post-treatment on high silica SSZ-13 zeolite membrane[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 14037-14043. [22] Li Y, He S, Shu C, et al. A facile approach to synthesize SSZ-13 membranes with ultrahigh N2 permeances for efficient N2/CH4 separations[J]. Journal of Membrane Science, 2021, 632: 119349. [23] Kida K, Maeta Y, Yogo K. Pure silica CHA-type zeolite membranes for dry and humidified CO2/CH4 mixtures separation[J]. Separation and Purification Technology, 2018, 197: 116-121. [24] Jang E, Hong S, Kim E, et al. Organic template-free synthesis of high-quality CHA type zeolite membranes for carbon dioxide separation[J]. Journal of Membrane Science, 2018, 549: 46-59. [25] Zhou J, Gao F, Sun K, et al. Green synthesis of highly CO2-selective CHA zeolite membranes in all-silica and fluoride-free solution for CO2/CH4 separations[J]. Energy & Fuels, 2020, 34(9): 11307-11314. [26] Wu T, Shu C, Liu S, et al. Separation performance of Si-CHA zeolite membrane for a binary H2/CH4 mixture and ternary and quaternary mixtures containing impurities[J]. Energy & Fuels, 2020, 34(9): 11650-11659. [27] Zokaie M, Olsbye U, Lillerud K P, et al. A computational study on heteroatom distribution in zeotype materials[J]. Microporous and Mesoporous Materials, 2012, 158: 175-179. [28] Zhang L, Jia M, Min E. Synthesis of SAPO-34/ceramic composite membranes[J]. Studies in Surface Ence and Catalysis, 1997, 105(11):2211-2216. [29] Li S, Falconer J L, Noble R D. SAPO-34 membranes for CO2/CH4 separation[J]. Journal of Membrane Science, 2004, 241(1): 121-135. [30] Poshusta J C, Noble R D, Falconer J L. Characterization of SAPO-34 membranes by water adsorption[J]. Journal of membrane Science, 2001, 186(1): 25-40. [31] Miyamoto M, Fujioka Y, Yogo K. Pure silica CHA type zeolite for CO2 separation using pressure swing adsorption at high pressure[J]. Journal of Materials Chemistry, 2012, 22(38): 20186-20189. [32] Li K, Li X, Wang Y, et al. Ionothermal synthesis of AEL-type aluminophosphate molecular sieve membrane and its formation mechanism[J]. Acta Chimica Sinica, 2013, 71(4): 573-578. [33] Chew T L, Ahmad A L, Bhatia S. Ba-SAPO-34 membrane synthesized from microwave heating and its performance for CO2/CH4 gas separation[J]. Chemical Engineering Journal, 2011, 171(3): 1053-1059. [34] Das J K, Das N, Bandyopadhyay S. Highly oriented improved SAPO-34 membrane on low cost support for hydrogen gas separation[J]. Journal of Materials Chemistry A, 2013, 1(16): 4966-4973. [35] Perot G, Guisnet M. Advantages and disadvantages of zeolites as catalysts in organic chemistry[J]. Journal of Molecular Catalysis, 1990, 61(2): 173-196. [36] Yamanaka N, Itakura M, Kiyozumi Y, et al. Acid stability evaluation of CHA-type zeolites synthesized by interzeolite conversion of FAU-type zeolite and their membrane application for dehydration of acetic acid aqueous solution[J]. Microporous and Mesoporous Materials, 2012, 158: 141-147. [37] Hasegawa Y, Abe C, Ikeda A. Pervaporative dehydration of organic solvents using high-silica CHA-type zeolite membrane[J]. Membranes, 2021, 11(3): 229. [38] Zhou R F, Li Y, Liu B, et al. Preparation of chabazite membranes by secondary growth using zeolite-T-directed chabazite seeds[J]. Microporous and Mesoporous Materials, 2013, 179: 128-135. [39] Hu N, Li Y, Zhong S, et al. Microwave synthesis of zeolite CHA (chabazite) membranes with high pervaporation performance in absence of organic structure directing agents[J]. Microporous and Mesoporous Materials, 2016, 228: 22-29. [40] Liu B, Zheng Y, Hu N, et al. Synthesis of low-silica CHA zeolite chabazite in fluoride media without organic structural directing agents and zeolites[J]. Microporous and Mesoporous Materials, 2014, 196: 270-276. [41] Hu N, Li Y, Zhong S, et al. Fluoride-mediated synthesis of high-flux chabazite membranes for pervaporation of ethanol using reusable macroporous stainless steel tubes[J]. Journal of Membrane Science, 2016, 510: 91-100. [42] 杨建华,李璘喆,路颖,贺高红,鲁金明,张艳. 一种CHA型沸石分子筛膜的制备方法[P]. PCT/CN2021/078992. 2021-03-04. [43] Chen Z, Zhang H, Gan L, et al. Hetero-epitaxial growth of chabazite zeolite membranes using an RHO-type seed layer[J]. Journal of Membrane Science, 2021: 119465. [44] Jiang J, Wang X, Peng L, et al. Batch-scale preparation of hollow fiber supported CHA zeolite membranes and module for solvents dehydration[J]. Microporous and Mesoporous Materials, 2017, 250: 18-26. [45] Qiu H, Jiang J, Peng L, et al. Choline chloride templated CHA zeolite membranes for solvents dehydration with improved acid stability[J]. Microporous and Mesoporous Materials, 2019, 284: 170-176. [46] 李冰婧. SAPO-34分子筛膜的制备及其渗透汽化性质的研究[D]. 吉林:吉林大学, 2014. [47] Agrawal K V, Topuz B, Pham T C T, et al. Oriented MFI membranes by gel-less secondary growth of sub-100nm MFI-nanosheet seed layers[J]. Advanced Materials, 2015, 27(21): 3243-3249. [48] Kim E, Cai W, Baik H, et al. Uniform Si-CHA zeolite layers formed by a selective sonication-assisted deposition method[J]. Angewandte Chemie, 2013, 125(20): 5388-5392. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号