酶膜反应器与手性分离膜在功能性糖生产中的应用展望 |
作者:洪兰,蒋尚昆,刘美玲,朱玥明,石婷,汪勇,孙世鹏 |
单位: 1南京工业大学化工学院 材料化学工程国家重点实验室,江苏 南京 211816; 2中国科学院天津工业生物技术研究所,天津 300308 |
关键词: 功能性稀少糖;酶膜反应器;手性分离;固定化酶 |
DOI号: |
分类号: TQ050.4 |
出版年,卷(期):页码: 2022,42(2):146-153 |
摘要: |
功能性糖,尤其是功能性稀少糖是一类具有低热量、低吸收,且具备特殊生理功效的糖,目前主要通过酶催化反应制备。但酶促反应中酶的稳定性差、催化效率低、互为对映异构体的原料与产物等体系中分离困难限制了其进一步发展。因此,如何解决上述问题从而推进其大规模制备是当前研究的重点。将酶促反应与膜分离过程耦合制备酶膜反应器,不仅可以控制低聚糖的相对分子质量分布范围,而且能在反应过程中将产物及时移除,有效缓解抑制反应的发生。但已报道的酶膜反应器主要用于分离酶和糖,互为对映异构体的糖需通过色谱进一步分离纯化,导致成本增加。因此,针对功能性糖的制备,本文就酶膜反应器与手性分离技术展开详细叙述,并对将二者结合的多功能膜在功能性稀少糖制备与纯化中的应用前景进行展望。 |
Functional sugars, especially functional rare sugars, are sugars with low calories and special physiological properties. They are mainly produced by enzymatic reactions to date. However, its further development is limited by unfavorable factors such as poor stability, low catalytic efficiency and difficulty in separation of enantiomers from raw materials. Therefore, more attention should be paid to solve the above problems and promote its large-scale preparation. The enzymatic membrane reactors are prepared by coupling enzyme-catalyzed reaction with membrane separation process. The molecular weight distribution of oligosaccharides is controlled and the products are removed in time during the reaction process, which effectively alleviates the inhibition reaction. Nevertheless, the reported enzymatic membrane reactors are mainly used for the separation of enzymes and sugars. The sugars which are enantiomers need to be further isolated and purified by chromatography, resulting in increased cost. Therefore, for the production of functional sugars, this review describes the enzymatic membrane reactors and chiral separation technology in detail. The article will also discuss the prospects of multifunctional membranes in the production and purification of functional rare sugars. |
基金项目: |
天津合成生物技术创新能力提升项目(TSBICIP-KJGG-003-20) |
作者简介: |
洪兰(1999-),女,贵州安顺人,硕士研究生,研究方向为有机纳滤膜的制备及应用 |
参考文献: |
[1] 陈洲, 李子杰, 李爱民, 等. 生物法合成稀有己酮糖的研究进展 [J]. 生物产业技术, 2018, 4: 40-48. [2] 王成福. 现代膜分离技术及其在功能糖生产中的应用 [J]. 中国食品添加剂, 2013, 4: 117-122. [3] 宋玉民, 周清涛, 帅斌, 等. 功能糖研究进展 [J]. 精细与专用化学品, 2013, 21: 29-31. [4] Emmadi M, Kulkarni S S. Recent advances in synthesis of bacterial rare sugar building blocks and their applications [J]. Nat Prod Rep, 2014, 31: 870-879. [5] Li C, Gao L, Du K, et al. Production of D-allose from D-fructose using immobilized L-rhamnose isomerase and D-psicose 3-epimerase [J]. Bioprocess Biosyst Eng, 2020, 43: 645-653. [6] Rai S K, Kumar V, Yadav S K. Development of recyclable magnetic cross-linked enzyme aggregates for the synthesis of high value rare sugar D-tagatose in aqueous phase catalysis [J]. Catal Sci Technol, 2021, 11: 2186-2194. [7] Bilal M, Iqbal H M N, Hu H, et al. Metabolic engineering pathways for rare sugars biosynthesis, physiological functionalities, and applications-a review [J]. Crit Rev Food Sci Nutr, 2018, 58: 2768-2778. [8] 贾东旭, 孙晨奕, 彭晨, 等. D-阿洛酮糖及其合成研究进展 [J]. 食品与发酵工业, 2021, 47: 211-217. [9] Granström T B, Takata G, Tokuda M, et al. Izumoring:a novel and complete strategy for bioproduction of rare sugars [J]. J Biosci Bioeng, 2004, 97: 89-94. [10] Zhang W, Zhang T, Jiang B, et al. Enzymatic approaches to rare sugar production [J]. Biotechnol Adv, 2017, 35: 267-274. [11] De Sousa M, Melo V M M, Hissa D C, et al. One-step immobilization and stabilization of a recombinant enterococcus faecium DBFIQ E36 L-arabinose isomerase for D-tagatose synthesis [J]. Appl Biochem Biotechnol, 2019, 188: 310-325. [12] Bortone N, Fidaleo M. Stabilization of immobilized L-arabinose isomerase for the production of D-tagatose from D-galactose [J]. Biotechnol Prog, 2020, 36: e3033. [13] Zhang Y W, Jeya M, Lee J K. Enhanced activity and stability of L-arabinose isomerase by immobilization on aminopropyl glass [J]. Appl Microbiol Biotechnol, 2011, 89: 1435-1442. [14] Wagner N, Bosshart A, Wahler S, et al. Model-based cost optimization of a reaction–separation integrated process for the enzymatic production of the rare sugar D-psicose at elevated temperatures [J]. Chem Eng Sci, 2015, 137: 423-435. [15] Bueno-Zabala K A, Lopresto C G, Calabro V, et al. Optimized production of glucose syrup and enzyme membrane reactor using in situ product recovery [J]. Ind Eng Chem Res, 2020, 59: 21305-21311. [16] Cao H, Cao J, Zhang Y, et al. Continuous preparation and characterization of immunomodulatory peptides from type II collagen by a novel immobilized enzyme membrane reactor with improved performance [J]. J Food Biochem, 2019, 43: e12862. [17] Bosshart A, Wagner N, Lei L, et al. Highly efficient production of rare sugars D-psicose and L-tagatose by two engineered D-tagatose epimerases [J]. Biotechnol Bioeng, 2016, 113: 349-358. [18] Addezio F D, Yoriyaz E J, Cantarella M, et al. Sucrose hydrolysis by invertase using a membrane reactor: effect of membrane cut-off on enzyme performance [J]. Brazilian J Pharm Sci, 2014, 50: 257-259. [19] K.C. M, S.G. G, A. R R. Continuous production of oligodextrans via controlled hydrolysis of dextran in an enzyme membrane reactor [J]. J Food Sci, 2002, 47: 1767-1771. [20] Cen Y K, Liu Y X, Xue Y P, et al. Immobilization of enzymes in/on membranes and their applications [J]. Adv Synth Catal, 2019, 361: 5500-5515. [21] Dedania S R, Patel M J, Patel D M, et al. Immobilization on graphene oxide improves the thermal stability and bioconversion efficiency of D-psicose 3-epimerase for rare sugar production [J]. Enzyme Microb Technol, 2017, 107: 49-56. [22] Zhang Y-W, Tiwari M K, Jeya M, et al. Covalent immobilization of recombinant Rhizobium etli CFN42 xylitol dehydrogenase onto modified silica nanoparticles [J]. Appl Microbiol Biotechnol, 2011, 90: 499-507. [23] Ran G, Tan D, Zhao J, et al. Functionalized polyhydroxyalkanoate nano-beads as a stable biocatalyst for cost-effective production of the rare sugar D-allulose [J]. Bioresour Technol, 2019, 289: 121673. [24] Torras C, Nabarlatz D, Vallot G, et al. Composite polymeric membranes for process intensification: enzymatic hydrolysis of oligodextrans [J]. Chem Eng J, 2008, 144: 259-266. [25] Thangaraj B, Solomon P R. Immobilization of lipases-a review. part I: enzyme immobilization [J]. ChemBioEng Rev, 2019, 6: 157-166. [26] Xu H, Cao Y, Li X, et al. An electrospun chitosan-based nanofibrous membrane reactor immobilized by the non-glycosylated rPGA for hydrolysis of pectin-rich biomass [J]. Renew Energ, 2018, 126: 573-582. [27] Sen D, Sarkar A, Gosling A, et al. Feasibility study of enzyme immobilization on polymeric membrane: a case study with enzymatically galacto-oligosaccharides production from lactose [J]. J Membr Sci, 2011, 378: 471-478. [28] Su Z, Luo J, Pinelo M, et al. Directing filtration to narrow molecular weight distribution of oligodextran in an enzymatic membrane reactor [J]. J Membr Sci, 2018, 555: 268-279. [29] Liu T, Li Z, Wang J, et al. Solid membranes for chiral separation: a review [J]. Chem Eng J, 2021, 410: 128247. [30] Wagner N, Bosshart A, Failmezger J, et al. A separation-integrated cascade reaction to overcome thermodynamic limitations in rare-sugar synthesis [J]. Angew Chem Int Ed, 2015, 54: 4182-4186. [31] Li C, Zhang C, Lin J, et al. Enzymatic fructose removal from D-psicose bioproduction model solution and the system modeling and simulation [J]. J Chem Technol Biotechnol, 2018, 93: 1249-1260. [32] Wagner N, Hakansson E, Wahler S, et al. Multi-objective optimization for the economic production of D-psicose using simulated moving bed chromatography [J]. J Chromatogr A, 2015, 1398: 47-56. [33] Saari P, Häkkä K, Heikkilä H, et al. A novel chromatographic production scale separation process for L-fucose [J]. J Liq Chromatogr Relat Technol, 2009, 32: 2050-2064. [34] Xie R, Chu L Y, Deng J G. Membranes and membrane processes for chiral resolution [J]. Chem Soc Rev, 2008, 37: 1243-1263. [35] Li C, Lin J, Guo Q, et al. D-psicose 3-epimerase secretory overexpression, immobilization, and D-psicose biotransformation, separation and crystallization [J]. J Chem Technol Biotechnol, 2018, 93: 350-357. [36] Menavuvu B T, Poonperm W, Leang K, et al. Efficient biosynthesis of D-allose from D-psicose by cross-linked recombinant L-rhamnose isomerase: separation of product by ethanol crystallization [J]. J Biosci Bioeng, 2006, 101: 340-345. [37] Higuchi A, Tamai M, Ko Y-A, et al. Polymeric membranes for chiral separation of pharmaceuticals and chemicals [J]. Polym Rev, 2010, 50: 113-143. [38] Wu Q, Lv H, Zhao L. Applications of carbon nanomaterials in chiral separation [J]. Trends Analyt Chem, 2020, 129: 115941. [39] Sun Z, Hou J, Li L, et al. Nanoporous materials for chiral resolution [J]. Coord Chem Rev, 2020, 425: 213481. [40] Jirage K B, Martin C R. New developments in membrane-based separations [J]. Trends in Biotechnology, 1999, 17: 197-200. [41] Li X, Chen Q, Tong X, et al. Chiral separation of β-cyclodextrin modified graphene oxide membranes with a complete enantioseparation performance [J]. J Membr Sci, 2021, 634: 119350. [42] Gu L, Chen Q, Li X, et al. Enantioseparation processes and mechanisms in functionalized graphene membranes: Facilitated or retarded transport? [J]. Chirality, 2020, 32: 842-853. [43] Wang Y, Wu N, Wang Y, et al. Graphite phase carbon nitride based membrane for selective permeation [J]. Nat Commun, 2019, 10: 2500. [44] Lu Y, Zhang H, Chan J, et al. Homochiral MOF–polymer mixed matrix membranes for efficient separation of chiral molecules [J]. Angew Chem Int Ed, 2019, 58: 16928 –16935. [45] Meng C, Chen Q, Li X, et al. Controlling covalent functionalization of graphene oxide membranes to improve enantioseparation performances [J]. J Membr Sci, 2019, 582: 83-90. [46] Chen Y, Xia L, Lu Z, et al. In situ fabrication of chiral covalent triazine frameworks membranes for enantiomer separation [J]. J Chromatogr A, 2021, 1654: 462475. [47] Gogoi M, Goswami R, Ingole P G, et al. Selective permeation of L-tyrosine through functionalized single-walled carbon nanotube thin film nanocomposite membrane [J]. Sep Purif Technol, 2020, 233: [48] Gaálová J, Yalcinkaya F, Cu?ínová P, et al. Separation of racemic compound by nanofibrous composite membranes with chiral selector [J]. J Membr Sci, 2020, 596: [49] Sueyoshi Y, Utsunomiya A, Yoshikawa M, et al. Chiral separation with molecularly imprinted polysulfone-aldehyde derivatized nanofiber membranes [J]. J Membr Sci, 2012, 401-402: 89-96. [50] 袁黎明, 苏莹秋, 段爱红, 等. 万古霉素手性膜拆分D,L-苯甘氨酸及手性拆分机理 [J]. 高等学校化学学报, 2016, 37: 1960-1965. [51] Yuan L M, Ma W, Xu M,.Optical resolution and mechanism using enantioselective cellulose, sodium alginate and hydroxypropyl-beta-cyclodextrin membranes [J]. Chirality, 2017, 29: 315-324. [52] B. L B, Martin C R. Enantioseparationusing apoenzymesimmobilized in a porouspolymericmembrane [J]. Nature, 1997, 388: 758-760. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号