基于金属有机骨架(MOFs)的纳滤膜制备 研究现状
作者:杜海洋,张文娟,温书,常晶,王少坡,张宇峰
单位: 天津城建大学 环境与市政工程学院水质科学与技术天津市重点实验室,天津 300384
关键词: 混合基质膜;纳滤膜;金属有机骨架(MOFs);TFN膜
DOI号:
分类号: TQ028;TB333
出版年,卷(期):页码: 2022,42(2):154-162

摘要:
纳滤膜的渗透和截留性能相互制约。金属有机骨架(MOFs)材料因其具有大孔隙率、高比表面积和孔径可调控的特点受到广泛关注,将MOFs作为纳米颗粒添加剂引入纳滤膜中,可有效缓解膜的选择性和渗透性之间的制约效应,并且赋予了纳滤膜一些其他的特点,如亲(疏)水性、抗菌性及抗污染性。本文介绍了应用于纳滤膜中MOFs的分类、特性及合成方法,列举了近些年来在MOFs纳滤膜中几种常用的聚合物基底,包括聚偏氟乙烯、聚砜、聚醚砜、聚酰亚胺和聚丙烯腈,并对制备MOFs纳滤膜的一些方法,主要是原位生长法、共混法以及界面聚合法等进行了详细的阐述。最后总结了在研究MOFs纳滤膜过程中遇到的一些问题,并对今后MOFs纳滤膜的发展做出了展望。
 The permeability and retention of nanofiltration membrane restrict each other. Metal organic frameworks (MOFs) materials have attracted much attention because of their large porosity, high specific surface area and controllable pore size. Introducing MOFs as a nanoparticle additive into nanofiltration membrane can effectively alleviate the restriction effect between membrane selectivity and permeability, and endow the nanofiltration membrane with some other characteristics, such as hydrophilicity, antibacterial and anti-fouling. In this paper, the classification, characteristics and synthesis methods of MOFs used in nanofiltration membranes are introduced, and several polymer substrates commonly used in MOFs nanofiltration membranes in recent years are listed, including polyvinylidene fluoride, polysulfone, polyethersulfone, polyimide and polyacrylonitrile. Some methods for the preparation of MOFs nanofiltration membranes, such as in-situ growth, blending and interfacial polymerization, are described in detail. Finally, some problems encountered in the research of MOFs nanofiltration membrane are summarized, and the development of MOFs nanofiltration membrane in the future is prospected.

基金项目:
国家自然科学基金(52100011);天津市教委科研计划项目(2018KJ161),天津城建大学科研启动基金(180501412)

作者简介:
杜海洋(1997-),男,河北沽源人,硕士,研究方向为基于金属有机骨架纳滤膜的制备

参考文献:
 [1] 周金盛, 陈观文. 纳滤膜技术的研究进展 [J]. 膜科学与技术, 1999, 19(4): 1-11.
[2] Xia S, Yao L, Zhao Y, et al. Preparation of graphene oxide modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal [J]. Chem Eng J, 2015, 280: 720-727.
[3] Zhao FY, An QF, Ji YL, et al. A novel type of polyelectrolyte complex/MWCNT hybrid nanofiltration membranes for water softening [J]. J Membr Sci, 2015, 492: 412-421.
[4] Dong LX, Huang XC, Wang Z, et al. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles [J]. Sep Purif Technol, 2016, 166: 230-239.
[5] Rajaeian B, Rahimpour A, Tade M O, et al. Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles [J]. Desalination, 2013, 313: 176-188.
[6] Liu C, Faria A F, Ma J, et al. Mitigation of biofilm development on thin-film composite membranes functionalized with zwitterionic polymers and silver nanoparticles [J]. Environ Sci Technol, 2017, 51(1): 182-191.
[7] Ng L Y, Mohammad A W, Leo C P, et al. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review [J]. Desalination, 2013, 308: 15-33.
[8] Kim J, Van der Bruggen B. The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment [J]. Environ Pollut, 2010, 158(7): 2335-2349.
[9] Pendergast M M, Hoek E M V. A review of water treatment membrane nanotechnologies [J]. Energy Environ Sci, 2011, 4(6): 1946-1971.
[10] Baghbanzadeh M, Rana D, Lan C Q, et al. Effects of inorganic nano-additives on properties and performance of polymeric membranes in water treatment [J]. Sep Purif Rev, 2015, 45(2): 141-167.
[11] Gangu K K, Maddila S, Mukkamala S B, et al. A review on contemporary Metal-Organic Framework materials [J]. Inorganica Chim Acta, 2016, 446: 61-74.
[12] Rowsell J L C, Yaghi O M. Metal-organic frameworks: a new class of porous materials [J]. Microporous Mesoporous Mater, 2004, 73(1/2): 3-14.
[13] Cheng X, Jiang X, Zhang Y, et al. Building additional passageways in polyamide membranes with hydrostable metal organic frameworks to recycle and remove organic solutes from various solvents [J]. ACS Appl Mater Interf, 2017, 9(44): 38877-38886.
[14] Campbell J, Burgal J D S, Szekely G, et al. Hybrid polymer/MOF membranes for organic solvent nanofiltration (OSN): Chemical modification and the quest for perfection [J]. J Membr Sci, 2016, 503: 166-176.
[15] Basu S, Maes M, Cano-Odena A, et al. Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks [J]. J Membr Sci, 2009, 344(1/2): 190-198.
[16] Wang L, Fang M, Liu J, et al. The influence of dispersed phases on polyamide/ZIF-8 nanofiltration membranes for dye removal from water [J]. RSC Adv, 2015, 5(63): 50942-50954.
[17] Ruan H, Guo C, Yu H, et al. Fabrication of a MIL-53(Al) nanocomposite membrane and potential application in desalination of dye solutions [J]. Ind Eng Chem Res, 2016, 55(46): 12099-12110.
[18] Sarango L, Paseta L, Navarro M, et al. Controlled deposition of MOFs by dip-coating in thin film nanocomposite membranes for organic solvent nanofiltration [J]. J Ind Eng Chem, 2018, 59: 8-16.
[19] EchaideGorriz C, Navarro M, Tellez C, et al. Simultaneous use of MOFs MIL-101(Cr) and ZIF-11 in thin film nanocomposite membranes for organic solvent nanofiltration [J]. Dalton Trans, 2017, 46(19): 6244-6252.
[20] EchaideGórriz C, Sorribas S, Téllez C, et al. MOF nanoparticles of MIL-68(Al), MIL-101(Cr) and ZIF-11 for thin film nanocomposite organic solvent nanofiltration membranes [J]. RSC Adv, 2016, 6(93): 90417-90426.
[21] Trinh D X, Tran T P N, Taniike T. Fabrication of new composite membrane filled with UiO-66 nanoparticles and its application to nanofiltration [J]. Sep Purif Technol, 2017, 177: 249-256.
[22] Li Y, Wee L H, Volodin A, et al. Polymer supported ZIF-8 membranes prepared via an interfacial synthesis method [J]. Chem Commun (Camb), 2015, 51(5): 918-920.
[23] 张宁, 肖峰, 曹源清, 等. MOF/聚合物复合膜基底的研究进展 [J]. 包装工程, 2020, 41(3): 138-144.
[24] Wang N, Liu T, Shen H, et al. Ceramic tubular MOF hybrid membrane fabricated through in situ layer-by-layer self-assembly for nanofiltration [J]. AIChE J, 2016, 62(2): 538-546.
[25] Guo Y, Ying Y, Mao Y, et al. Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation [J]. Angew Chem, 2016, 128(48): 15344-15348.
[26] Campbell J, Székely G, Davies R P, et al. Fabrication of hybrid polymer/metal organic framework membranes: mixed matrix membranes versus in situ growth [J]. J Mater Chem A, 2014, 2(24): 9260-9271.
[27] Denny M S, Jr., Cohen S M. In situ modification of metal-organic frameworks in mixed-matrix membranes [J]. Angew Chem Int Ed Engl, 2015, 54(31): 9029-9032.
[28] Ma XH, Yang Z, Yao ZK, et al. A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes [J]. J Membr Sci, 2017, 525: 269-276.
[29] Yang L, Wang Z, Zhang J. Zeolite imidazolate framework hybrid nanofiltration (NF) membranes with enhanced permselectivity for dye removal [J]. J Membr Sci, 2017, 532: 76-86.
[30] Cai Y, Shi D, Liu G, et al. Polycrystalline zirconium metal-organic framework membranes supported on flexible carbon cloth for organic solvent nanofiltration [J]. J Membr Sci, 2020, 615: 118551.
[31] Wang Z, Qi J, Lu X, et al. Epitaxially grown MOF membranes with photocatalytic bactericidal activity for biofouling mitigation in desalination [J]. J Membr Sci, 2021, 630: 119327.
[32] Zhu L, Yu H, Zhang H, et al. Mixed matrix membranes containing MIL-53 (Al) for potential application in organic solvent nanofiltration [J]. RSC Adv, 2015, 5(89): 73068-73076.
[33] Sorribas S, Gorgojo P, Tellez C, et al. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration [J]. J Am Chem Soc, 2013, 135(40): 15201-15208.
[34] Wang J, Wang Y, Zhang Y, et al. Zeolitic imidazolate framework/graphene oxide hybrid nanosheets functionalized thin film nanocomposite membrane for enhanced antimicrobial performance [J]. ACS Appl Mater Interf, 2016, 8(38): 25508-25519.
[35] Zhang R, Ji S, Wang N, et al. Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes [J]. Angew Chem Int Ed Engl, 2014, 53(37): 9775-9779.
[36] 周玲玲, 牛照栋, 汤立红, 等. MOFs有机-无机杂化膜的制备及应用研究进展 [J]. 膜科学与技术, 2018, 38(6): 111-120+128.
[37] Meng Y, Shu L, Liu L, et al. A high-flux mixed matrix nanofiltration membrane with highly water-dispersible MOF crystallites as filler [J]. J Membr Sci, 2019, 591: 117360.
[38] Jeong B-H, Hoek E M V, Yan Y, et al. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes [J]. J Membr Sci, 2007, 294(1/2): 1-7.
[39] Zhu J, Qin L, Uliana A, et al. Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration [J]. ACS Appl Mater Interf, 2017, 9(2): 1975-1986.
[40] Zhu J, Hou J, Yuan S, et al. MOF-positioned polyamide membranes with a fishnet-like structure for elevated nanofiltration performance [J]. J Mater Chem A, 2019, 7(27): 16313-16322.
[41] Van Goethem C, Verbeke R, Hermans S, et al. Controlled positioning of MOFs in interfacially polymerized thin-film nanocomposites [J]. J Mater Chem A, 2016, 4(42): 16368-16376.
[42] Zhou S, Feng X, Zhu J, et al. Self-cleaning loose nanofiltration membranes enabled by photocatalytic Cu-triazolate MOFs for dye/salt separation [J]. J Membr Sci, 2021, 623: 119058.
[43] Li X, Liu Y, Wang J, et al. Metal-organic frameworks based membranes for liquid separation [J]. Chem Soc Rev, 2017, 46(23): 7124-7144.
[44] Thompson J A, Chapman K W, Koros W J, et al. Sonication-induced ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes [J]. Microporous Mesoporous Mater, 2012, 158: 292-299.
[45] Ordoñez M J C, Balkus K J, Ferraris J P, et al. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes [J]. J Membr Sci, 2010, 361(1/2): 28-37.
[46] Nik O G, Chen X Y, Kaliaguine S. Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation [J]. J Membr Sci, 2012, 413/414: 48-61.
[47] Shamsaei E, Lin X, Low Z X, et al. Aqueous phase synthesis of ZIF-8 membrane with controllable location on an asymmetrically porous polymer substrate [J]. ACS Appl Mater Interf, 2016, 8(9): 6236-6244.
[48] Li W, Yang Z, Zhang G, et al. Stiff metal-organic framework-polyacrylonitrile hollow fiber composite membranes with high gas permeability [J]. J Mater Chem A, 2014, 2(7): 2110-2118.
[49] Gascon J, Kapteijn F. Metal-organic framework membranes--high potential, bright future? [J]. Angew Chem Int Ed Engl, 2010, 49(9): 1530-1532.
[50] Puthai W, Kanezashi M, Nagasawa H, et al. SiO2-ZrO2 nanofiltration membranes of different Si/Zr molar ratios: Stability in hot water and acid/alkaline solutions [J]. J Membr Sci, 2017, 524: 700-711.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号