轴盘旋转陶瓷膜动态错流过滤器处理油水乳化液的实验研究 |
作者:王帅帅,关顺,陈家庆,司政,胡建龙,安申法,王秀军,谷雨,杨寒月 |
单位: 1北京石油化工学院机械工程学院,北京 102617;2深水油气管线关键技术与装备北京市重点实验室,北京 102617; 3中石化胜利油田分公司石油工程技术研究院 东营 257067;4中海油研究总院有限责任公司,北京 100027 |
关键词: 陶瓷膜分离;错流过滤;轴盘旋转结构;油水乳化液;除油率;膜通量 |
DOI号: |
分类号: TE99 |
出版年,卷(期):页码: 2022,42(3):113-121 |
摘要: |
陶瓷膜分离因其分离效率高、物料无相变等优势,在油水分离领域长期备受关注,但常规陶瓷膜组件存在膜通量随过滤工作时间延长而下降等不足,影响了其工程应用。内部带有弧形辐射式流道的轴盘旋转陶瓷膜组件近几年开始引起国内关注,但国内外迄今尚未应用于分离高浓度油水乳化液。本文基于设计定制的轴盘旋转陶瓷膜动态错流过滤实验装置,系统开展了分离性能的实验研究,在不同跨膜压力和电机转速等工况条件下,比较了处理不同含油浓度油水乳化液的除油效率以及膜通量的变化。实验结果表明,轴盘旋转陶瓷膜动态错流过滤器的除油效率能稳定保持99.5%以上;综合除油效率和膜通量来看,跨膜压力0.1MPa、电机转速1400rpm为处理油水乳化液的最佳过滤操作条件,分离含油浓度10%(V/V%)油水乳化液时的除油率为99.88%;采用压缩空气反冲洗的方式,可以使降低的膜通量快速恢复,实现陶瓷膜长时间稳定除油。 |
Ceramic membrane separation has attracted much attention in the field of oil-water separation for a long time because of its high separation efficiency and no phase transition. However, the conventional ceramic membrane module has some shortcomings, such as the decrease of membrane flux with the increase of filtration working time, which affects its engineering application. The dynamic cross-flow filtration of shaft-disk rotary ceramic membrane with arc radiation channel is a new cross-flow filtration technology developed in recent years. Up to now, it has not been used to separate high-concentration oil-water emulsions. In this paper, based on the customized rotary ceramic membrane dynamic cross-flow filter, the experimental research of separation performance was systematically carried out under different operating conditions such as trans-membrane pressure and motor speed. The oil removal efficiency and membrane permeate flux of high concentration oil-water emulsions with different oil content were compared. The experimental results show that, under all conditions, the oil removal efficiency of the shaft disk rotary ceramic membrane dynamic cross flow filter is more than 99.5%. According to the comprehensive oil removal efficiency and membrane permeate flux, the best operating filter conditions for treating oil-water emulsions are trans-membrane pressure 0.1 MPa and motor speed 1400rpm, and the oil removal rate is 99.88% when separating oil concentration 10% (V) oil-water emulsions. The compressed air backwashing method can quickly restore the reduced membrane flux and realize the long-term stable oil removal of the ceramic membrane. |
基金项目: |
中国石油化工股份有限公司科研项目(320047);国家自然科学基金企业创新发展联合基金重点支持项目(U20B2030) |
作者简介: |
王帅帅(1996-),男,硕士研究生,研究方向为环保多相流高效分离技术与设备。 |
参考文献: |
[1]陈家庆, 刘涛, 王春升, 等. 海上油气田采出水处理技术的现状与展望[J]. 石油机械, 2021, 49(07): 66-76. CHEN Jiaqing, LIU Tao, WANG Chunsheng, et al. Development Status and Prospect of Produced Water Treatment Technology for Offshore Oil & Gas Field[J]. China Petroleum Machinery, 2021, 49(07): 66-76. [2]孟广耀, 陈初升, 刘卫, 等. 陶瓷膜分离技术发展30年回顾与展望[J]. 膜科学与技术, 2011, 31(03): 86-95. MENG Guangyao, CHEN Chusheng, LIU Wei, et al. Ceramic membrane technology :30 years retrospect and prospect[J]. Membrane Science and Technology, 2011, 31(03): 86-95. [3]王建黎, 计建炳, 徐又一. 膜分离技术在水处理领域的应用[J]. 膜科学与技术, 2003(05): 65-68. WANG Jianli, JI Jianbing, XU Youyi. Advancement on membranes in water production[J]. Membrane Science and Technology, 2003(05): 65-68. [4]赵冰, 王军, 田蒙奎. 我国膜分离技术及产业发展现状[J]. 现代化工, 2021, 41(02): 6-10. ZHAO Bing, WANG Jun, TIAN Mengkui. China’s development status of membrane separation technology and industry[J]. Modern Chemical Industry, 2021, 41(02): 6-10. [5]曾涛, 赵杰. 基于膜分离技术在污水处理中的应用研究[J]. 环境科学与管理, 2021, 46(03): 69-73. ZENG Tao, ZHAO Jie. Application of Membrane Separation Technology in Sewage Treatment[J]. Environmental Science and Technology, 2021, 46(03): 69-73. [6]张莉, 樊文豪, 高帆, 等. 膜分离技术在工业废水资源化利用中的研究进展[J]. 化工管理, 2021(17): 35-37. ZHANG Li, FAN Wenhao, GAO Fan, et al. Recent Progress of Membrane Separation Technology in Resource Utilization of Industrial Wastewater[J]. Chemical Enterprise Management, 2021(17): 35-37. [7]王怀林, 王忆川, 姜建胜, 等. 陶瓷微滤膜用于油田采出水处理的研究[J]. 膜科学与技术, 1998(02): 61-66. WANG Huailin, WANG Yichuan, JIANG Jiansheng, et al. Study on the treatment of oil field produced water with ceramic microfiltration membranes[J]. Membrane Science and Technology, 1998(02): 61-66. [8]王文娟, 赵昊瀚, 潘艳秋. 动态膜分离油水乳化液操作条件优化和影响因素分析[J]. 高校化学工程学报, 2015, 29(05): 1045-1052. WANG Wenjuan, ZHAO Haohan, PAN Yanqiu. Process Optimization and Characterization of Oil-in-Water Emulsion Separation with Dynamic Membranes[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(05): 1045-1052. [9]W. R. Bowen, J. I. Calvo, A. Hernández. Steps of membrane blocking in flux decline during protein microfiltration[J]. Journal of Membrane Science, 1995, 101: 153-165. [10]蒋军, 张景来, 胡军, 等. 动态错流过滤研究的最新发展动态[J]. 过滤与分离, 2003(03): 17-19. JIANG Jun, ZHANG Jinglai, HU Jun, et al. The latest development of the dynamic cross flow filtration research[J]. Journal of Filtration and Separation, 2003(03): 17-19. [11]吕斯濠, 张赵田, 蔡勋江, 等. 振动剪切强化膜过滤技术研究进展[J]. 化工进展, 2009, 28(07): 1115-1121+1133. LÜ Sihao, ZHANG Zhaotian, CAI Xunjiang, et al. Progress of vibratory shear enhanced process membrane filtration[J]. Chemical Industry and Engineering Progress, 2009, 28(07): 1115-1121+1133. [12]陈日志, 张利雄, 徐南平. 旋转切向流对一体式膜过滤器中膜过滤性能影响的研究[J]. 膜科学与技术, 2006(01): 3-6. CHEN Rizhi, ZHANG Lixiong, XU Nanping. Effect of rotary tangential flow on the membrane filtration performance of submerged membrane filters[J]. Membrane Science and Technology, 2006(01): 3-6. [13]王鹏, 韩严和, 李雪峰, 等. 剪切技术强化膜分离过程的研究进展[J]. 现代化工, 2014, 34(11): 41-45+47. WANG Peng, HAN Yanhe, LI Xuefeng, et al. Development of membrane separation process enhanced by shearing force[J].Modern Chemical Industry, 2014, 34(11): 41-45+47. [14]Michel Y. Jaffrin. Hydrodynamic Techniques to Enhance Membrane Filtration[J]. Annual Review of Fluid Mechanics, 2012, 44: 77-96. [15]徐舟. 旋转圆盘动态膜过滤系统的计算流体力学研究[D]. 大连:大连理工大学, 2009. XU Zhou. CFD Simulation of Dynamic Filtration System with Rotating Disks[D]. 2009.Dalian University of Technology, 2009. [16]Johannes Schäfer, Ramona Bast, Zeynep Atamer, et al. Concentration of skim milk by means of dynamic filtration using overlapping rotating ceramic membrane disks[J]. International Dairy Journal,2018,78: 11-19. [17]Michel Y Jaffrin. Dynamic filtration with rotating disks, and rotating and vibrating membranes: an update[J]. Current Opinion in Chemical Engineering, 2012, 1: 171-177. [18]Zhenghuan Tu, Luhui Ding. Microfiltration of mineral suspensions using a MSD module with rotating ceramic and polymeric membranes[J]. Separation and Purification Technology, 2010, 73(3): 363-370. [19]Wenxiang Zhang, Luhui Ding, Nabil Grimi, et al. A rotating disk ultrafiltration process for recycling alfalfa wastewater[J]. Separation and Purification Technology, 2017, 188: 476-484. [20]Franz Liebermann. Dynamic cross flow filtration with Novoflow's single shaft disk filters[J]. Desalination, 2009, 250: 1087-1090. [21]M. Ebrahimi, O. Schmitz, S. Kerker, et al. Dynamic cross-flow filtration of oilfield produced water by rotating ceramic filter discs[J]. Desalination and Water Treatment, 2013, 51: 1762-1768. [22]黄斌, 张威, 王莹莹, 等. 陶瓷膜过滤技术在油田含油污水中的应用研究进展[J]. 化工进展, 2017, 36(05): 1890-1898. HUANG Bin, ZHANG Wei, WANG Yingying, et al. Application and research progress of ceramic membrane filtration technology in the treatment of oily wastewater in oil field[J]. Chemical Industry and Engineering Progress, 2017, 36(05): 1890-1898. [23]E. Tummons, QI Han, H. J. Tanudjaja, et al. Membrane fouling by emulsified oil: A review[J]. Separation and Purification Technology, 2020, 248: 116919. [24]刘宸旭, 陈朝浪, 张继平, 等. 油水乳化液的边界润滑行为及机理分析[J]. 机械工程学报, 2019, 55(09): 48-54. LIU Chenxu, CHEN Chaolang, ZHANG Jiping, et al. Boundary Lubrication Behavior and Mechanism Analysis of Oil-Water Emulsion[J]. Journal of Mechanical Engineering, 2019, 55(09): 48-54. [25]徐超. 油田含油污水陶瓷膜处理技术研究[D]. 青岛:中国石油大学, 2010. XU Chao. Study on Treatment of Oily Wastewater in Oil-Field by Ceramic Membrane Technology[D]. Qingdao: China University of Petroleum, 2010. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号