阴离子交换膜阳离子基团的碱稳定性研究进展
作者:王雪,李永纲,郑吉富,张所波,李胜海
单位: 1.中国科学院 长春应用化学研究所,中国科学院生态环境高分子材料重点实验室,长春 130022;2.中国科学技术大学 应用化学与工程学院,合肥 230026
关键词: 碱性阴离子交换膜燃料电池;阴离子交换膜;碱稳定性;阳离子基团
DOI号:
分类号: TM911.48
出版年,卷(期):页码: 2022,42(3):145-152

摘要:
 碱性阴离子交换膜燃料电池(AAEMFCs)因其优异的动力学反应特性、可使用低成本的非Pt催化剂、可抑制燃料渗透等优点而得到迅速发展。阴离子交换膜(AEMs)作为AAEMFCs的核心部件,对AAEMFCs的性能起到直接且关键的影响。为满足AAEMFCs的使用性能,AEMs通常需要具备高OH-电导率及优异的热稳定性、机械稳定性及碱稳定性。然而目前AEMs的碱稳定性仍面临着巨大挑战。AEMs的碱稳定性的下降主要是由于碱性环境下AEMs的聚合物骨架和阳离子基团的降解引起。本文将结合近年来国内外研究进展梳理AEMs的阳离子基团的碱稳定性问题及解决思路,并对其未来的发展趋势进行了合理的预测。
 Alkaline anion exchange membrane fuel cells (AAEMFCs) have been developed rapidly due to their excellent kinetic reaction characteristics, the availability of low-cost non-Pt catalysts, and the ability to inhibit fuel penetration. As the core part of AAEMFCs, anion exchange membrane (AEMs) plays a direct and critical role in the performance of AAEMFCs. To meet the requirements of AAEMFCs, AEMs usually require high OH- ionic conductivity and excellent thermal, mechanical, and alkaline stability. However, the alkaline stability of AEMs is still facing great challenges. The decrease of the alkaline stability of AEMs is mainly caused by the degradation of the polymer backbone and cationic groups in the alkaline environment. In this paper, combined with recent research progress at home and abroad, the alkaline stability problems and solutions of cationic groups of AEMs are sorted out, and the development trend of AEMs in the future is reasonably predicted.

基金项目:
国家自然科学基金(21774213)、吉林省科技发展计划(20200801051GH)

作者简介:
王雪(1997-),女,河北邢台人,在读硕士生,主要从事膜材料的制备与性能方向的研究

参考文献:
[1] 马成乡. 氢燃料电池的应用研究进展 [J]. 山东化工, 2015, 44(09): 64-65.
[2] 张建军. 阴离子交换膜制备及碱性燃料电池应用研究 [D]; 中国科学技术大学, 2020.
[3] RAN J, WU L, HE Y B, et al. Ion exchange membranes: New developments and applications [J]. Journal of Membrane Science, 2017, 522: 267-291.
[4] 薛博欣. 耐碱型有机阳离子的分子结构设计及阴离子交换膜制备 [D]; 中国科学技术大学, 2020.
[5] LI J L, BU F Z, RU C Y, et al. Enhancing the selectivity of Nafion membrane by incorporating a novel functional skeleton molecule to improve the performance of direct methanol fuel cells [J]. Journal of Materials Chemistry A, 2020, 8(36): 196-206.
[6] CHENG J, HE G H, ZHANG F X. A mini-review on anion exchange membranes for fuel cell applications: Stability issue and addressing strategies [J]. International Journal of Hydrogen Energy, 2015, 40(23): 7348-7360.
[7] THOMPSON S T, PETERSON D, HO D, et al. Perspective-The Next Decade of AEMFCs: Near-Term Targets to Accelerate Applied R&D [J]. Journal of the Electrochemical Society, 2020, 167(8),084514
[8] MERLE G, WESSLING M, NIJMEIJER K. Anion exchange membranes for alkaline fuel cells: A review [J]. Journal of Membrane Science, 2011, 377(1-2): 1-35.
[9] LIU Y-Z, DING L, LIU J, et al. Polyphenylene Oxide Based Ion Exchange Membranes for Fuel Cells [J]. Acta Polymerica Sinica, 2018, (7): 797-813.
[10] 司江菊, 卢善富, 相艳. 燃料电池用碱性阴离子交换膜链结构调控研究进展 [J]. 科学通报, 2019, 64(02): 153-164.
[11] GOTTESFELD S, DEKEL D R, PAGE M, et al. Anion exchange membrane fuel cells: Current status and remaining challenges [J]. Journal of Power Sources, 2018, 375: 170-184.
[12] YOU W, HUGAR K M, SELHORST R C, et al. Degradation of Organic Cations under Alkaline Conditions [J]. The Journal of Organic Chemistry, 2021, 86(1): 254-263.
[13] LIU L, CHU X M, LIAO J Y, et al. Tuning the properties of poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes and their performance in H-2/O-2 fuel cells [J]. Energy & Environmental Science, 2018, 11(2): 435-446.
[14] STURGEON M R, MACOMBER C S, ENGTRAKUL C, et al. Hydroxide based Benzyltrimethylammonium Degradation: Quantification of Rates and Degradation Technique Development [J]. Journal of The Electrochemical Society, 2015, 162(4): F366-F372.
[15] MARINO M G, KREUER K D. Alkaline Stability of Quaternary Ammonium Cations for Alkaline Fuel Cell Membranes and Ionic Liquids [J]. Chemsuschem, 2015, 8(3): 513-523.
[16] 牛梦瑶. 哌啶基碱性阴离子交换膜的合成与改性 [D]; 大连理工大学, 2019.
[17] WANG J, ZHAO Y, SETZLER B P, et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells [J]. Nature Energy, 2019, 4(5): 392-398.
[18] ZHANG Y, CHEN W, LI T, et al. Tuning hydrogen bond and flexibility of N-spirocyclic cationic spacer for high performance anion exchange membranes [J]. Journal of Membrane Science, 2020, 613,118507
[19] HUGAR K M, KOSTALIK H A, COATES G W. Imidazolium Cations with Exceptional Alkaline Stability: A Systematic Study of Structure-Stability Relationships [J]. Journal of the American Chemical Society, 2015, 137(27): 8730-8737.
[20] DEAVIN O I, MURPHY S, ONG A L, et al. Anion-exchange membranes for alkaline polymer electrolyte fuel cells: comparison of pendent benzyltrimethylammonium- and benzylmethylimidazolium-head-groups [J]. Energy & Environmental Science, 2012, 5(9): 8584-8597.
[21] PRICE S C, WILLIAMS K S, BEYER F L. Relationships between Structure and Alkaline Stability of Imidazolium Cations for Fuel Cell Membrane Applications [J]. ACS Macro Letters, 2014, 3(2): 160-165.
[22] GUO D, LIN C X, HU E N, et al. Clustered multi-imidazolium side chains functionalized alkaline anion exchange membranes for fuel cells [J]. Journal of Membrane Science, 2017, 541: 214-223.
[23] PAN J, SUN Z, ZHU H, et al. Synthesis and characterization of main-chain type polyimidazolium-based alkaline anion exchange membranes [J]. Journal of Membrane Science, 2020, 610,118283
[24] XUE B X, CUI W D, ZHOU S Y, et al. Facile Preparation of Highly Alkaline Stable Poly(arylene–imidazolium) Anion Exchange Membranes through an Ionized Monomer Strategy [J]. Macromolecules, 2021, 54(5): 2202-2212.
[25] WANG J H, LI S H, ZHANG S B. Novel Hydroxide-Conducting Polyelectrolyte Composed of an Poly(arylene ether sulfone) Containing Pendant Quaternary Guanidinium Groups for Alkaline Fuel Cell Applications [J]. Macromolecules, 2010, 43(8): 3890-3896.
[26] 薛博欣, 郑吉富, 张所波. 耐碱的胍盐阴离子交换膜研究进展 [J]. 科学通报, 2019, 64(02): 134-144.
[27] XUE B X, WANG F, ZHENG J F, et al. Highly stable polysulfone anion exchange membranes incorporated with bulky alkyl substituted guanidinium cations [J]. Molecular Systems Design & Engineering, 2019, 4(5): 1039-1047.
[28] XUE B X, WANG Q, ZHENG J F, et al. Bi-guanidinium-based crosslinked anion exchange membranes: Synthesis, characterization, and properties [J]. Journal of Membrane Science, 2020, 601,117923
[29] 杨佳睿. 耐碱性阴离子交换膜的制备 [D]; 辽宁石油化工大学, 2019.
[30] GU S, CAI R, LUO T, et al. A Soluble and Highly Conductive Ionomer for High-Performance Hydroxide Exchange Membrane Fuel Cells [J]. Angewandte Chemie-International Edition, 2009, 48(35): 6499-6502.
[31] ZHANG B Z, KASPAR R B, GU S, et al. A New Alkali-Stable Phosphonium Cation Based on Fundamental Understanding of Degradation Mechanisms [J]. Chemsuschem, 2016, 9(17): 2374-2379.
[32] NOONAN K J T, HUGAR K M, KOSTALIK H A, et al. Phosphonium-Functionalized Polyethylene: A New Class of Base-Stable Alkaline Anion Exchange Membranes [J]. Journal of the American Chemical Society, 2012, 134(44): 18161-18164.
[33] HUGAR K M, YOU W, COATES G W. Protocol for the Quantitative Assessment of Organic Cation Stability for Polymer Electrolytes [J]. ACS Energy Letters, 2019, 4(7): 1681-1686.
[34] ZHA Y P, DISABB-MILLER M L, JOHNSON Z D, et al. Metal-Cation-Based Anion Exchange Membranes [J]. Journal of the American Chemical Society, 2012, 134(10): 4493-4496.
[35] ZHU T Y, SHA Y, FIROUZJAIE H A, et al. Rational Synthesis of Metallo-Cations Toward Redox- and Alkaline-Stable Metallo-Polyelectrolytes [J]. Journal of the American Chemical Society, 2020, 142(2): 1083-1089.
[36] ZHENG X Y, SONG S Y, YANG J R, et al. 4-formyl dibenzo-18-crown-6 grafted polyvinyl alcohol as anion exchange membranes for fuel cell [J]. European Polymer Journal, 2019, 112: 581-590.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号