纳米硫化铁改性纳滤膜的制备及抗菌性能
作者:王 泽,魏秀珍,黄嘉豪,邵方嫄,李 欢,陈金媛
单位: 浙江工业大学 环境学院,浙江 杭州 310000
关键词: 纳米硫化铁;界面聚合;纳滤膜;抗菌性;改性
DOI号:
分类号: TQ051.893;TQ455.19
出版年,卷(期):页码: 2022,42(4):65-72

摘要:
 为了提高纳滤膜的抗菌性,以三氯化铁和二烯丙基二硫(DADS)为原材料通过改进的溶剂热法合成具有抗菌能力的纳米硫化铁(nFeS)。以聚砜超滤膜为基膜,将纳米硫化铁作为改性剂添加到水相哌嗪单体中,通过界面聚合制备出nFeS改性聚酰胺纳滤(NF)膜。系列表征证明nFeS成功制备并负载到聚酰胺纳滤膜选择层中。nFeS改性聚酰胺纳滤膜在0.4 MPa操作压力下的渗透通量为65.7 L/(m2h),对1000 mg/L的Na2SO4截留率为94.8 %;随着nFeS添加量的增加,nFeS改性纳滤膜的抗菌性能逐渐增强。在NF膜具有较好渗透分离性能的前提下,改性NF膜对革兰氏阳性菌的抑菌率达到57%,对革兰氏阴性菌的抑菌率达到41%;同时,nFeS改性NF膜还具有较好的抗污染性。
 To improve the antimicrobial performance of nanofiltration (NF) membranes, nano iron sulfide (nFeS) with antibacterial ability was synthesized by the improved solvothermal method using ferric chloride and diallyl disulfide (DADS) as the raw materials. nFeS modified polyamide NF membrane was prepared by interfacial polymerization process with polysulfone ultrafiltration membrane as porous support membrane and nFeS as modify agent added to aqueous piperazine aqueous solution. Series characterization indicated that nFeS was successfully synthesized and embedded into the polyamide NF membrane selection layer. The permeation flux of nFeS modified polyamide NF membrane was 65.7 L /(m2h) at 0.4 MPa, and the rejection rate for 1000 mg/L Na2SO4 was 94.8%. With the increase of nFeS concentration, the antibacterial properties of nFeS modified NF membrane were gradually enhanced. For the nFeS modified NF membrane prepared in this study, it showed relatively good permeation and separation properties, and the inhibition rate of modified NF membrane against Gram-positive bacteria achieved 57% and the inhibition rate against Gram-negative bacteria reached 41% of. At the same time, nFeS modified NF membrane also shows good antifouling properties.

基金项目:
浙江省自然科学基金项目(LY19E030005);

作者简介:
王泽(1996-),男,河南濮阳人,硕士研究生,研究方向为膜法水处理

参考文献:
 [1]徐国荣,王生辉,赵河立,等. 海水淡化聚酰胺复合反渗透膜的发展趋势与展望[J]. 膜科学与技术, 2015, 35(5):122-126.
[2]Fang W, Shi L, Wang R. Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability[J]. J. Membr Sci, 2014, 468:52-61. 
[3]OH B S, OH S, KIM S J, et al. Optimization of wastewater reclamation and reuse system using membrane filtration and oxidation processes: Removal of pharmaceuticals[J]. Desalination and Water Treatment, 2016, 57(22):10146-10151.
[4]李银,张林. 抗生物污染反渗透膜的研究进展[J]. 膜科学与技术, 2018, 38(2):111-118.
[5]Komlentic R. Rethinking the causes of membrane biofouling[J]. Filtr. Sep, 2010, 47(5):26-28.
[6]Yan L, Quan F, Yao S, et al Bio-inspired fabrication of high perm-selectivity and anti-fouling membranes based on zwitterionic polyelectrolyte nanoparticles[J]. J Mater Chem. A, 2016, 4(11):4224-4231. 
[7]陆薇儿. 微生物胞外聚合物的膜污染机理研究[D].华东理工大学,2020.
[8]Ciston S, Lueptow R M, Gray K A. Bacterial attachment on reactive ceramic ultrafiltration membranes[J]. J Membr Sci, 2008, 320(1): 101–107.
[9]Deng J, Liang J, Li M, et al. Enhanced visible-light-driven photocatalytic bacteria disinfection by g-C3N4-AgBr - ScienceDirect[J]. Colloids SurfB, 2017, 152:49-57.   
[10]Cormode D P , SanchezG B L , Mieszawska A J , et al. Inorganic nanocrystals as contrast agents in MRI: Synthesis, coating and introduction of multifunctionality[J]. NMR Biomed, 2013, 26(7):766-780. 
[11]Li L , Wu H , Chen J , et al. Anchoring nanoscale iron sulfide onto graphene oxide for the highly efficient immobilization of uranium (VI) from aqueous solutions[J]. J Mol Liq, 2021, 332(23):115910.
[12]仇智月. 纳米硫化铁抗菌和清除生物膜的作用与机制研究[D]. 扬州大学, 2019.  
[13]BAIN C D, BIE H A, WHIT G M. Comparison of self-assembled monolayers on gold: Coadsorption of thiols and disulfides[J]. Langmuir, 1989, 5(3):723–727.
[14]YAM T, HA P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Appl. Surf. Sci, 2008, 254(8):2441-2449.
[15]ZHU J, YUAN S, ULIANA A, et al. High-flux thin film composite membranes for nanofiltration mediated by a rapid co-deposition of polydopamine/piperazine[J]. J. Membr Sci, 2018, 554: 97–108.
[16]Sun H, Wu P, et al. Tuning the functional groups of carbon quantum dots in thin film nanocomposite membranes for nanofiltration[J]. J. Membr Sci, 2018.
[17]刘忠洲,张国俊,纪树兰.研究浓差极化和膜污染过程的方法与策略[J]. 膜科学与技术, 2006(5):1-15.
[18]Tian X, Wang J, Zhang H, et al. Establishment of transport channels with carriers for water in reverse osmosis membrane by incorporating hydrotalcite into the polyamide layer[J]. Rsc Advances, 2018, 8(22):12439-12448.  
[19]王丽霞. 铁的氧,硫化合物的制备及其电化学性能研究[D]. 青岛科技大学, 2017.
[20]吴宇虹. 大蒜素的作用机制及其在动物生产中的应用[J].饲料博览,2011(5):52-54. 
[21] Su H, Chou C, Hung D, et al. The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay[J]. Biomaterials, 2009, 30(30):5979-5987.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号