GO改性高效油水分离PVDF杂化膜制备及其性能
作者:李红林,郝毅,沈舒苏,周晓吉,白仁碧
单位: 1.苏州科技大学环境科学与工程学院,江苏 苏州 215009; 2.江苏省分离净化材料与技术工程研究中心,江苏 苏州 215009; 3.江苏省水处理技术与材料协同创新中心,江苏 苏州 215009
关键词: 氧化石墨烯;聚偏氟乙烯;杂化膜;膜改性;抗污染
DOI号:
分类号: :TQ028.8
出版年,卷(期):页码: 2022,42(4):73-80

摘要:
 氧化石墨烯(GO)因其具有丰富的羟基和羧基而被作为亲水改性剂应用于膜的制备。本研究通过向由聚偏氟乙烯(PVDF)与一种三嵌段共聚物(AP)组成的混合物中加入不同比例的GO,以制备具有高效油水分离性能的PVDF/AP/GO杂化膜,并考察了其对油水乳液的分离性能。研究发现,GO添加量为0.20 %(质量分数)时的膜(M3)性能表现最佳,其在分离油水乳液时截留率较高(>98.9%),相对通量恢复率高于90.7%。此外,M3的纯水通量高达1090 L/(m2.h)。即使经过5次油水乳液循环过滤实验,截留率(>96%)和纯水恢复通量Jc(>879 L/(m2.h))仍然保持在非常高的水平,表现出优异的油水乳液分离性能。
  Graphene oxide (GO) is applied as a hydrophilic modifier in the preparation of membranes because of its abundance of hydroxyl and carboxyl groups. In this study, PVDF/AP/GO hybrid membranes with efficient oil/water separation performance were prepared by adding different proportions of GO to a mixture consisting of polyvinylidene fluoride (PVDF) and a triblock copolymer (AP). The membrane performance was found to be the best when the GO was added to 0.20 % (M3), and it had excellent oil rejection rate (R>98.9%) and relative flux recovery rate (>90.7%) in oil/water emulsion separation experiments. In addition, the permeability of M3 is greatly improved, with pure water fluxes as high as 1090 L/(m2.h) and permeability fluxes of 159.1 L/(m2.h). Even after five cycle filtration experiments of oil/water emulsion, R (>96%) and permeation flux (>879 L/(m2.h)) remained at very high levels. Therefore, the hybrid membrane has considerable application prospects in the actual oil/water separation process.

基金项目:
国家自然科学基金项目(51478282),江苏省研究生实践创新计划项目(SJCX21_1402)。

作者简介:
李红林(1997—),女,江苏省连云港市,硕士研究生,研究方向为水污染控制理论与技术

参考文献:
 
 
[1]Yang X B, Wang Z X, Shao L. Construction of oil-unidirectional membrane for integrated oil collection with lossless transportation and oil-in-water emulsion purification [J]. J Membr Sci, 2018, 549: 67-74.
[2]Wang C F, Chen Y B, Hu X Y, et al. Engineering novel high-flux thin-film composite (TFC) hollow fiber nanofiltration membranes via a facile and scalable coating procedure[J]. Desalination, 2022, 526:115531.
[3]Chen Y L, Shen Q, Wei J J, et al. Novel strategy for membrane biofouling control in MBR with nano-MnO2 modified PVDF membrane by in-situ ozonation[J]. Sci Total Environ, 2022, 808: 151996.
[4]Zhao X, Che Y, Mo Y H, et al. Fabrication of PEI modified GO/MXene composite membrane and its application in removing metal cations from water[J]. J Membr Sci, 2021, 640: 119847.
[5]Meng Y, Shu L, Liu L, et al. A high-flux mixed matrix nanofiltration membrane with highly water-dispersible MOF crystallites as filler[J]. J Membr Sci, 2019, 591: 117360.
[6]Zhang Y H, Xu X M, Yue C L, et al. Insight into the efficient co-removal of Cr(VI) and Cr(III) by positively charged UiO-66-NH2 decorated ultrafiltration membrane[J]. Chem Eng J, 2021, 404: 126546.
[7]Meng Y, Shu L, Liu L, et al. A high-flux mixed matrix nanofiltration membrane with highly water-dispersible MOF crystallites as filler[J]. J Membr Sci, 2019, 591: 117360.
[8]申亮. 新型聚酰胺薄膜复合膜的研制及其正渗透应用[D]. 湖北: 华中科技大学, 2019.
[9]Ang W L, Mohammad A W, Teow Y H, et al. Hybrid chitosan/FeCl3 coagulation-membrane processes: performance evaluation and membrane fouling study in removing natural organic matter[J]. Sep Purif Technol, 2015, 152: 23-31.
[10]郝毅, 沈舒苏, 张懿元, 等. 聚偏氟乙烯表面接枝改性的研究进展[J]. 膜科学与技术, 2018, 38(1):122-128.
[11]Lu X Y, Geng Y Z, Jia Z Q, et al. In situ syntheses of NH2-MIL-53/PVDF composite membranes for dyes separation[J]. Sep Purif Technol, 2021, 269:118760.
[12]Yang G, Zhang D, Zhu G, et al. A Sm-MOF/GO nanocomposite membrane for efficient organic dye removal from wastewater[J]. RSC Advance, 2020, 10(14): 8540-8547.
[13]Deng Y, Zhang G W, Bai R B, et al. Fabrication of superhydrophilic and underwater superoleophobic membranes via an in-situ crosslinking blend strategy for highly efficient oil/water emulsion separation[J]. J Membr Sci, 2019, 569:60-70.
[14]Song N, Sun Y C, Xiao X, et al. Doping MIL-101(Cr)@GO in polyamide nanocomposite membranes with improved water flux[J]. Desalination, 2020, 492: 114341.
[15]Wang H, Wang W, Wang L, et al. Enhancement of hydrophilicity and the resistance for irreversible fouling of polysulfone (PSF) membrane immobilized with graphene oxide (GO) through chloromethylated and quaternized reaction[J]. Chem Eng J, 2017, 334: 2068-2078.
[16]Xiao S, Yu S, Yan L, et al. Preparation and properties of PPSU/GO mixed matrix membrane[J]. Chin J Chem Eng, 2017, 25(4): 408-414.
[17]Yu Y, Yang Y, Yu L, et al. Modification of polyvinylidene fluoride membrane by silver nanoparticles-graphene oxide hybrid nanosheet for effective membrane biofouling mitigation[J]. Chemosphere, 2021, 268, 129187.
[18]Rashidi R, Khakpour S, Masoumi S, et al. Effects of GO-PEG on the performance and structure of PVC ultrafiltration membranes[J]. Chem Eng Res Des, 2022, 177: 815-825.
[19]Cui J Y, Xie A T, Yan Z. Fabrication of crosslinking modified PVDF/GO membrane with acid, alkali and salt resistance for efficient oil-water emulsion separation[J]. Sep Purif Technol, 2021, 265: 118528.
[20]Manikandan G N, Helen K M. Performance studies of GO/PF127 incorporated Polyetherimide Ultrafiltration membranes for the rejection of oil from oil wastewater[J]. Chem Eng Res Des, 2021, 168: 214-226.
[21]Tran T T V, Kumar S R, Nguyen C H, et al. High-permeability graphene oxide and poly(vinyl pyrrolidone) blended poly(vinylidene fluoride) membranes: Roles of additives and their cumulative effects[J]. J Membr Sci, 2021, 619:118773.
[22]李焱, 沈舒苏, 聂士超, 等. 1种三嵌段聚合物作界面改性剂的中空纤维膜研究[J]. 水处理技术, 2016, 42(2): 41-50.
[23]Zhu X Y, Loo H E, Bai R B. A novel membrane showing both hydrophilic and oleophobic surface properties and its non-fouling performances for potential water treatment applications[J]. J Membr Sci, 2013, 436(2), 47-56.
[24]Shen S, Hao Y, Zhang Y, et al. Enhancing the antifouling properties of poly(vinylidene fluoride) (PVDF) membrane through a novel blending and surface-grafting modification approach[J]. ACS Omega, 2018, 3(12):17403-17415.
[25]Hummers J W S, Offeman R E. Preparation of graphitic oxide[J]. J Am Chem Soc, 1958, 80(6):1339.
[26]栗雯绮. 氧化石墨烯交联改性复合膜的制备及其分离性能研究[D]. 陕西: 西安理工大学, 2021.
[27]Fahrina A, Yusuf M, Muchtar S, et al. Development of anti-microbial polyvinylidene fluoride (PVDF) membrane using bio-based ginger extract-silica nanoparticles (GE-SiNPs) for bovine serum albumin (BSA) filtration[J]. J Taiwan Ins Chem E, 2021, 125: 323-331.
[28]Wang Z, Yu H, J Xia, et al. Novel GO-blended PVDF ultrafiltration membranes[J]. Desalination, 2012, 299: 50-54.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号