尿残液气扫式膜蒸馏机理与试验
作者:张良长,柳录湘,张非凡,艾为党,胡伟,吴志强
单位: 1中国航天员科研训练中心,北京 100094;2湘潭大学机械工程学院,湖南 湘潭 411105;3湘潭大学环境与资源学院,湖南 湘潭 411105
关键词: 环控生保;水循环;尿处理;传热传质
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2022,42(4):112-121

摘要:
 尿残液是空间站环境控制与生命保障(环控生保)系统中尿液水分回收过程的副产物,具有高盐含量、强酸强氧化性的特点,进一步处理处置难度大。本文立足现有空间站水循环技术状态,充分考虑轻量化、高可靠的工程约束,提出采用间接加热气扫式膜蒸馏技术途径完成残液中的水分回收,同时完成减量化处理。建立该膜蒸馏形式的传热传质模型,分别考察了吹扫气体状态(温度、湿度、流量),膜材料性质(厚度、孔径、孔隙率),以及残液物质浓度等7个主要变量对蒸馏速率的影响规律,其中的孔隙率和进气湿度对蒸馏速率有相对更大的影响。针对尿残液的理化性质,筛选出13种耐受性疏水膜材料,开展膜蒸馏试验,实验所得趋势与理论预测一致,实验值与理论值的平均相对偏差为6.6%,验证了模型的有效性。研究为残液水分回收膜材料选择和技术开发提供了理论和实验基础。
 
 Urine brine is a byproduct of water recovery process from urine in the environmental control and life support systmen of the space station, it is very difficult to further disposal because the properties of high salt concentration, strong acid, and high oxidation. According to technological state of water cycle and the technical constrains of lightweight and high reliability in space station, the indirect heated sweeping gas membrane distillation technology was proposed treatment brine achieving water recovery and volume reduction meanwhile. A heat and mass transfer model of the membrane distillation was established. The effects of seven main variables on the distillation rate, including inlet air temperature, humidity, flow rate, membrane thickness, pore size, porosity and solid substances concentration of brine, were investigated respectively. The results suggested that membrane porosity and air humidity have a higher effect on the distillation velocity. According to the physicochemical properties of urine brine, 13 kinds of hydrophobic membrane materials with high resistance were screened out and the membrane distillation experiment was carried out. The experimental results showed a trend consistent with the theoretical predictiosn, and the average relative deviation between experimental and theoretical values was 6.6%, which verified the validity of the model. The research provides theoretical and experimental basis for future membrane material selection and technology development.

基金项目:
人因工程重点实验室稳定支持项目(项目编号:GJSD18001)

作者简介:
张良长(1983-),男,湖南新化,博士,助理研究员,研究方向为航天环控生保技术

参考文献:
 [1] Grigoriev A I, Sinyak Y E, Samsonov N M, et al. Regeneration ofwateratspacestations[J]. Acta Astronautica, 2011, 68:1567-1573.
[2] Carter D, Gleich A. Selection of a brine processor technology for nasa manned missions[C]//46th International Conference on Environmental Systems. Vienna, Austria: International Conference on Environmental Systems, 2016:1-11.
[3] 柳录湘, 张良长, 马秋成, 等. Eclss中尿残液处理研究概况与技术选型分析[J]. 航天医学与医学工程, 2021, 34(2):173-182.
[4] Kelsey L K, Pasadilla P, Fisher J, et al. Ionomer-membrane water processor (iwp) engineering development unit (edu) brine water recovery test results[C]//45th International Conference on Environmental Systems. Bellevue, Washington International Conference on Environmental Systems, 2015:1-16.
[5] 汪瑶, 李天祥, 朱静. 膜蒸馏技术在工业废水处理中的研究进展[J]. 化学工业与工程, 2021, 38(4):1-8.
[6] 任静, 刘状, 郭淑娟, 等. 亲水/疏水复合膜强化膜蒸馏深度处理工业废水的研究进展[J]. 化工进展, 2021, 40(11):6347-6357. 
[7] 康赛, 郑利兵, 魏源送, 等. 膜蒸馏在高氨氮废水处理与回用中的研究与应用进展[J]. 工业水处理, 2021, 41(12):15-21. [8] Saida I A, Chomiaka T, Floydb J, et al. Sweeping gas membrane distillation (SGMD) for wastewater treatment, concentration, and desalination: A comprehensive review[J]. Chemical Engineering & Processing: Process Intensification, 2020, 153(2020):1-11.
[9] 吴庸烈. 膜蒸馏技术及其应用进展[J]. 膜科学与技术, 2003, 23(4):67-79+92.
[10] 申龙, 高瑞昶. 膜蒸馏技术最新研究应用进展[J]. 化工进展, 2014, 33(2):289-297.
[11] Yadav A, Labhasetwar P K, Shahi V K. Membrane distillation using low-grade energy for desalination: A review[J]. Journal of Environmental Chemical Engineering, 2021, 9(5):105818.
[12] 马韬, 杜小泽, 吴江波, 等. 带有冷凝微结构的间歇式膜蒸馏组件传热传质过程机理研究[J]. 中国电力, 2020, 53(7):176-183.
[13] 车振宁, 刘国昌, 郭春刚, 等. PTFE中空纤维微孔膜制备工艺及应用研究进展[J]. 工程塑料应用, 2020, 48(7):138-141.
[14] Kelsey L K, Pasadilla P, Cognata T. Closing the water loop for exploration:2018 status of the brine processor assembly[C]//48th International Conference on Environmental Systems. Albuquerque, New Mexico: International Conference on Environmental Systems, 2018:1-18.
[15] Incropera F P, Dewitt D P, Bergman T L, et al. Fundamentals of heat and mass transfer[B]. GE Xinshi and YE Hong trans. 6th ed. New York:John Wiley & Sons, Inc., 2007.
[16] 陈华艳, 李欢, 吕晓龙. 气扫式膜蒸馏传质传热过程[J]. 化工学报, 2009, 60(2):304-309.
[17] Khayet M, Godino P, Mengual J I. Nature of flow on sweeping gas membrane distillation[J]. Journal of Membrane Science, 2000, 170:243-255.
[18] Zhao S F, Paulh M F, Zong L X, et al. Condensation studies in membrane evaporation and sweeping gas membrane distillation[J]. Journal of Membrane Science, 2014, 462:9-16.
[19] Shirazi M M A, Kargaria A, Tabatabaei M, et al. Concentration of glycerol from dilute glycerol wastewater using sweeping gas membrane distillation[J]. Chemical Engineering and Processing: Process Intensification, 2014, 78:58-66.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号