环境敏感聚醚砜膜研究进展 |
作者:谢毅,魏然,陈胜求,魏志伟,赵伟锋,赵长生 |
单位: 四川大学 高分子科学与工程学院, 成都 610065 |
关键词: 聚醚砜膜;环境敏感;酸碱敏感;离子敏感;热敏感;光敏感 |
DOI号: |
分类号: TQ31 |
出版年,卷(期):页码: 2022,42(4):130-137 |
摘要: |
聚醚砜膜凭借其优异的综合性能被广泛用于先进分离与生物医用领域。然而,随着各领域对分离过程可控性以及分离精度要求的提高,目前商业化聚醚砜膜越来越难满足现实所需。因此,研究与开发可以感知和响应环境刺激,改变其特性的环境敏感聚醚砜膜是近年来科研人员关注的热点。本文根据刺激响应信号的种类,分别介绍酸碱敏感膜、离子敏感膜、热敏感膜、光敏感膜等在不同领域的潜在应用,以及刺激信号-膜结构响应-功能的关系,并对未来的环境敏感聚醚砜膜研究方向提出展望。 |
Polyethersulfone (PES) membranes have been widely used in advanced separation and biomedical fields due to their excellent comprehensive properties. However, with the increasing needs for separation accuracy and the controllability of separation process in different fields, it is more and more difficult for commercial polyethersulfone membranes to meet the actual needs. Therefore, researches and developments of stimuli-responsive PES membranes that can sense and respond to environmental stimuli and change their characteristics, have always been attract much attentions for the researchers. According to the types of stimulus response signals, this article introduces acid-base sensitive membranes, thermal-responsive membranes, ion-responsive membranes, and light-responsive membranes, as well as their applications in different fields, and illustrates the interdependence of stimulus signals-membrane structure response-function applications. Then, we also put forward the prospects for future research direction of environmentally sensitive PES membranes. |
基金项目: |
国家自然科学基金(51903168, 51873115);国家重点研发专项(2016YFC1103000,2018YFC1106400)。 |
作者简介: |
谢毅(1990-06),男,四川广安人,副研究员,博士,研究方向为生物医用高分子 |
参考文献: |
[1] 张翔, 赵伟锋, 赵长生, 功能性聚醚砜膜的研究进展[J]. 功能高分子学报 34 (2021) 114-125. [2] C. Zhao, J. Xue, F. Ran, et al., Modification of polyethersulfone membranes – A review of methods[J]. Prog. Mater. Sci. 58(1) (2013) 76-150. [3] C. Zhao, S. Nie, M. Tang, et al., Polymeric pH-sensitive membranes—A review[J]. Prog. Polym. Sci. 36(11) (2011) 1499-1520. [4] S. Chen, Y. Xie, A. Chinnappan, et al., A self-cleaning zwitterionic nanofibrous membrane for highly efficient oil-in-water separation[J]. Sci. Total Environ. 729 (2020) 138876. [5] C. Lv, S. Chen, Y. Xie, et al., Positively-charged polyethersulfone nanofibrous membranes for bacteria and anionic dyes removal[J]. J. Colloid. Interf. Sci. 556 (2019) 492-502. [6] T. Xiang, L.-R. Wang, L. Ma, et al., From commodity polymers to functional polymers[J]. Sci. Rep. 4(1) (2014) 1-5. [7] Y. Xie, R. Wang, S. Li, et al., A robust way to prepare blood-compatible and anti-fouling polyethersulfone membrane[J]. Colloids Surf. B. Biointerfaces 146 (2016) 326-333. [8] Y. Xie, S. Li, X. Jiang, et al., Zwitterionic glycosyl modified polyethersulfone membranes with enhanced anti-fouling property and blood compatibility[J]. J. Colloid. Interf. Sci. 443 (2015) 36-44. [9] L. Yao, C. He, S. Chen, et al., Codeposition of Polydopamine and Zwitterionic Polymer on Membrane Surface with Enhanced Stability and Antibiofouling Property[J]. Langmuir 35(5) (2019) 1430-1439. [10] Q. Wei, F. Zhang, J. Li, et al., Oxidant-induced dopamine polymerization for multifunctional coatings[J]. Polymer Chemistry 1 (2010) 1430-1433. [11] Y. Xie, L. Chen, X. Zhang, et al., Integrating zwitterionic polymer and Ag nanoparticles on polymeric membrane surface to prepare antifouling and bactericidal surface via Schiff-based layer-by-layer assembly[J]. J. Colloid. Interf. Sci. 510 (2018) 308-317. [12] S. Chen, Y. Xie, T. Xiao, et al., Tannic acid-inspiration and post-crosslinking of zwitterionic polymer as a universal approach towards antifouling surface[J]. Chem. Eng. J. 337 (2018) 122-132. [13] Y. Xie, S. Chen, Y. Qian, et al., Photo-responsive membrane surface: Switching from bactericidal to bacteria-resistant property[J]. Mater. Sci. Eng. C. 84 (2018) 52-59. [14] C. Cheng, S. Sun, C. Zhao, Progress in heparin and heparin-like/mimicking polymer-functionalized biomedical membranes[J]. J. Mater. Chem. B 2(44) (2014) 7649-7672. [15] M. Tang, J. Xue, K. Yan, et al., Heparin-like surface modification of polyethersulfone membrane and its biocompatibility[J]. J. Colloid. Interf. Sci. 386(1) (2012) 428-40. [16] J. Ren, W. Zhao, C. Cheng, et al., Comparison of pH-sensitivity between two copolymer modified polyethersulfone hollow fiber membranes[J]. Desalination 280(1-3) (2011) 152-159. [17] S. Chen, Y. Du, X. Zhang, et al., One-step electrospinning of negatively-charged polyethersulfone nanofibrous membranes for selective removal of cationic dyes[J]. Journal of the Taiwan Institute of Chemical Engineers 82 (2018) 179-188. [18] W. Zou, Y. Huang, J. Luo, et al., Poly (methyl methacrylate–acrylic acid–vinyl pyrrolidone) terpolymer modified polyethersulfone hollow fiber membrane with pH sensitivity and protein antifouling property[J]. J. Membr. Sci. 358(1-2) (2010) 76-84. [19] Q. Wei, J. Li, B. Qian, et al., Preparation, characterization and application of functional polyethersulfone membranes blended with poly (acrylic acid) gels[J]. J. Membr. Sci. 337(1-2) (2009) 266-273. [20] R. Wang, T. Xiang, W. Yue, et al., Preparation and characterization of pH-sensitive polyethersulfone hollow fiber membranes modified by poly(methyl methylacrylate-co-4-vinyl pyridine) copolymer[J]. J. Membr. Sci. 423-424 (2012) 275-283. [21] X. Zhang, J. Zhou, R. Wei, et al., Design of anion species/strength responsive membranes via in-situ cross-linked copolymerization of ionic liquids[J]. J. Membr. Sci. 535 (2017) 158-167. [22] X. Zhang, S. Xu, J. Zhou, et al., Anion-Responsive Poly(ionic liquid)s Gating Membranes with Tunable Hydrodynamic Permeability[J]. ACS Appl. Mater. Interfaces 9(37) (2017) 32237-32247. [23] R. Wei, F. Yang, R. Gu, et al., Design of Robust Thermal and Anion Dual-Responsive Membranes with Switchable Response Temperature[J]. ACS Appl. Mater. Interfaces 10(42) (2018) 36443-36455. [24] Ö. Tekinalp, S.A. Altinkaya, Development of high flux nanofiltration membranes through single bilayer polyethyleneimine/alginate deposition[J]. J. Colloid. Interf. Sci. 537 (2019) 215-227. [25] T. Xiang, T. Lu, W.-F. Zhao, et al., Ionic strength- and thermo-responsive polyethersulfone composite membranes with enhanced antifouling properties[J]. New J. Chem. 42(7) (2018) 5323-5333. [26] T. Xiang, C.-D. Luo, R. Wang, et al., Ionic-strength-sensitive polyethersulfone membrane with improved anti-fouling property modified by zwitterionic polymer via in situ cross-linked polymerization[J]. J. Membr. Sci. 476 (2015) 234-242. [27] M. Birkner, Ultrafiltration membranes with markedly different pH-and ion-responsivity by photografted zwitterionic polysulfobetain or polycarbobetain[J]. J. Membr. Sci. 494 (2015) 57-67. [28] K. Belal, F. Stoffelbach, J. Lyskawa, et al., Recognition-Mediated Hydrogel Swelling Controlled by Interaction with a Negative Thermoresponsive LCST Polymer[J]. Angew. Chem. Int. Ed. 55(45) (2016) 13974-13978. [29] V. Boyko, S. Richter, I. Grillo, et al., Structure of thermosensitive poly(N-vinylcaprolactam-co-N-vinylpyrrolidone) microgels[J]. Macromolecules 38(12) (2005) 5266-5270. [30] M.A. Kostiainen, C. Pietsch, R. Hoogenboom, et al., Temperature-Switchable Assembly of Supramolecular Virus-Polymer Complexes[J]. Advanced Functional Materials 21(11) (2011) 2012-2019. [31] M. He, Q. Wang, J. Zhang, et al., Substrate-Independent Ag-Nanoparticle-Loaded Hydrogel Coating with Regenerable Bactericidal and Thermoresponsive Antibacterial Properties[J]. ACS Appl. Mater. Interfaces 9(51) (2017) 44782-44791. [32] Q. Wang, Y. Feng, M. He, et al., Thermoresponsive Antibacterial Surfaces Switching from Bacterial Adhesion to Bacterial Repulsion[J]. Macromolecular Materials and Engineering 303(5) (2018). [33] K.A.S. Bornillo, S. Kim, H. Choi, Cu (II) removal using electrospun dual-responsive polyethersulfone-poly (dimethyl amino) ethyl methacrylate (PES-PDMAEMA) blend nanofibers[J]. Chemosphere 242 (2020) 125287. [34] R. Wei, F. Yang, R. Gu, et al., Design of Robust Thermal and Anion Dual-Responsive Membranes with Switchable Response Temperature[J]. ACS Appl. Mater. Interfaces 10(42) (2018) 36443-36455. [35] D. Wang, W. Zhao, Q. Wei, et al., Photoswitchable Azobenzene/Cyclodextrin Host-Guest Complexes: From UV- to Visible/Near-IR-Light-Responsive Systems[J]. chemphotochem 2 (2018) 403-415. [36] W. Shi, J. Deng, H. Qin, et al., Poly(ether sulfone) membranes with photo-responsive permeability[J]. J. Membr. Sci. 455 (2014) 357-367. [37] Y. Xu, W. Lin, H. Wang, et al., Dual-functional polyethersulfone composite nanofibrous membranes with synergistic adsorption and photocatalytic degradation for organic dyes[J]. Composites Sci. Technol. 199 (2020). [38] L. Chen, B. Yang, P. Zhou, et al., A polyethersulfone composite ultrafiltration membrane with the in-situ generation of CdS nanoparticles for the effective removal of organic pollutants and photocatalytic self-cleaning[J]. J. Membr. Sci. (2021) 119715. [39] R. Wei, J. Guo, L. Jin, et al., Vapor induced phase separation towards anion-/near-infrared-responsive pore channels for switchable anti-fouling membranes[J]. J. Mater. Chem. A 8(18) (2020) 8934-8948. [40] M. He, Q. Wang, Z. Shi, et al., Inflammation-responsive self-regulated drug release from ultrathin hydrogel coating[J]. Colloids Surf. B. Biointerfaces 158 (2017) 518-526. [41] W. Shi, L. Zhang, J. Deng, et al., Redox-responsive polymeric membranes via supermolecular host–guest interactions[J]. J. Membr. Sci. 480 (2015) 139-152. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号