双极膜电渗析处理工业高盐废水的研究现状 |
作者:杨浩然,王炳煌,郑煜铭,杨佳诚,苑志华 |
单位: 1.福建农林大学 生命科学学院,福建 福州 350002;2.中国科学院城市环境研究所 中国科学院城市污染物转化重点实验室,福建 厦门 361021 |
关键词: 双极膜电渗析;高盐废水;脱盐;废水资源化;耦合工艺 |
DOI号: |
分类号: X703 |
出版年,卷(期):页码: 2022,42(4):148-156 |
摘要: |
相比较传统离子膜电解制酸碱,双极膜电渗析(BMED)具备较低的投运成本、进水预处理要求低、对盐种类适用性广等优点,在当前工业高盐废水资源化处理中,极具应用潜力。本文首先介绍了BMED的技术原理,综述了BMED及其耦合工艺在工业高盐废水处理的研究应用现状,提出了目前应用的技术问题以及改进措施。最后,展望了未来发展趋势。 |
Compared with traditional ionic membrane electrolysis for acid and alkali preparation, bipolar membrane electrodialysis (BMED) has the advantages of lower operation cost, lower requirements for pretreatment of influent water, and wide applicability to salt types. At present, it has great application potential in the utilization of industrial waste brine. Firstly, this paper introduces the technical principle of BMED, summarizes the research and application status of BMED and its coupling process in industrial high-salinity wastewater treatment, and puts forward the technical problems and improvement measures of the current application. Finally, the future development trend is prospected. |
基金项目: |
厦门市科技计划项目(3502Z20203076)。 |
作者简介: |
杨浩然(1997-),男,山东省临沂市人,硕士生,研究方向为高盐废水的资源化处理 |
参考文献: |
[1] 张雨山. 海水淡化技术产业现状与发展趋势[J]. 工业水处理, 2021, 41(9): 26-30. [2] 陈则立, 李彤, 朱华静. 阳离子交换膜在高盐废水处理中的应用[J]. 膜科学与技术, 2019, 39(5): 136-142. [3] Mejri A, SorianoM P, MirallesC S, et al. Effect of liquid depth on microcontaminant removal by solar photo-Fenton with Fe(III):EDDS at neutral pH in high salinity wastewater[J]. Environ Sci Pollut R, 2019, 26(27): 28071-28079. [4] 肖小兰, 亓金鹏, 刘皓,等. AOA-MBR处理高盐榨菜废水厌氧膜生物反应器出水的效能[J]. 环境工程学报, 2021, 15(9): 3057-3066. [5] Rou C, Yong X. Efficient preparation of xylonic acid from xylonate fermentation broth by bipolar membrane electrodialysis[J]. Appl Biochem Biotechnol, 2018, 187: 1-11. [6] Yan Z, Hitt J L, Zeng Z, et al. Improving the efficiency of CO2 electrolysis by using a bipolar membrane with a weak-acid cation exchange layer[J]. Nat Chem, 2021, 13(1): 33-40. [7] Culcasi A, Gurreri L, Tamburini A, et al. Effect of design features and operating conditions on the performance of a bipolar membrane-based acid/base flow battery[J]. Chem Eng Transac, 2021, 86: 1387-1392. [8] Gao W, Fang Q, Yan H, et al. Recovery of acid and base from sodium sulfate containing lithium carbonate using bipolar membrane electrodialysis[J]. Membranes, 2021, 11(2): 152. [9] Lee L, Kim D. Poly(arylene ether ketone)-based bipolar membranes for acid–alkaline water electrolysis applications[J]. J Mater Chem A, 2021, 9(9): 5485-5496 [10] Li Y, Shi S, Cao H, et al. Bipolar membrane electrodialysis for generation of hydrochloric acid and ammonia from simulated ammonium chloride wastewater[J]. Water Research, 2016, 89: 201-209. [11] Yang Y, Gao X, Fan A, et al. An innovative beneficial reuse of seawater concentrate using bipolar membrane electrodialysis[J]. J Membr Sci, 2014, 449: 119-126. [12] Huang J, Bruggen B. Preparation of highly pure tetrapropyl ammonium hydroxide using continuous bipolar membrane electrodialysis[J]. Chem Eng J, 2013, 220: 311-319. [13] 刘启照,李扬. 电解法生产烧碱的能耗与节能技术[J]. 氯碱工业, 1996, 10: 2-12. [14] Reig M, Casas S, Gibert O, et al. Integration of nanofiltration and bipolar electrodialysis for valorization of seawater desalination brines: Production of drinking and waste water treatment chemicals[J]. Desalination, 2016, 382: 13-20. [15] 孙哲. 双极膜电渗析煤化工浓盐水资源化利用实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. [16] Lin J, Ye W, Huang J, et al. Toward resource recovery from textile wastewater: Dye extraction, water and base/acid regeneration using a hybrid NF-BMED process[J]. ACS Sustain. Chem. Eng, 2015, 3(9): 1993-2001. [17] Wang XX, Wang M, Jia YX, et al. The feasible study on the reclamation of the glyphosate neutralization liquor by bipolar membrane electrodialysis[J]. Desalination, 2012, 300: 58-63. [18] Tata A, Marya M E, Dani S M. Porous structure and adsorptive properties of activated carbon derived from Bambusa vulgaris striata by two-stage KOH/NaOH mixture activation for Hg2+ removal[J]. J Water Process Eng, 2021, 43: 102294. [19] Pärnamäe R, Mareev S, Nikonenko V, et al. Bipolar membranes: A review on principles, latest developments, and applications[J]. J Membr Sci, 2021, 617: 11538. [20] 谢鸿芳, 肖艳春, 郑林禄, et al. 双极膜技术在环境工程中的应用与展望[J]. 广州化学, 2012, 37(1): 56-62. [21] Mani K N, Chlanda F P, Byszewski C H. Aquatech membrane technology for recovery of acid/base values for salt streams[J]. Desalination, 1988, 68(2): 149-166. [22] Berkessa Y W, Lang Q, Yan B, et al. Anion exchange membrane organic fouling and mitigation in salt valorization process from high salinity textile wastewater by bipolar membrane electrodialysis[J]. Desalination, 2019, 465: 94-103. [23] Kovalev N V, Karpenko T V, Sheldeshov N V, et al. Ion transport through a modified heterogeneous bipolar membrane and electromembrane recovery of sulfuric acid and sodium hydroxide from a sodium sulfate solution[J]. Membr Membr Technol, 2020, 2(6): 391-398. [24] Tian W, Wang X, Fan C, et al. Optimal treatment of hypersaline industrial wastewater via bipolar membrane electrodialysis[J]. Acs Sustain Chem Eng, 2019, 7(14): 12358-12368. [25] Achoh A, Zabolotsky V, Melnikov S. Conversion of water-organic solution of sodium naphtenates into naphtenic acids and alkali by electrodialysis with bipolar membranes[J]. SepPurifTechnol, 2019, 212: 929-940. [26] Zhou Y, Yan H, Wang X, et al. A closed loop production of water insoluble organic acid using bipolar membranes electrodialysis (BMED)[J]. J Membr Sci, 2016, 520: 345-353. [27] Luo H, Cheng X, Liu G, et al. Citric acid production using a biological electrodialysis with bipolar membrane[J]. J Membr Sci, 2017, 523: 122-128. [28] Jeon S I, Chung I J, Ahn CH. Surface modification of polystyrene beads with sulfonamide derivatives and application to water softening system[J]. Macromol Res, 2020, 28(2): 172-178. [29] Ibáñez R, Pérez-González A, Gómez P, et al. Acid and base recovery from softened reverse osmosis (RO) brines. Experimental assessment using model concentrates[J]. Desalination, 2013, 309: 165-170 [30] Mavrov V, Chmiel H, Heitele B. Desalination of surface water to industrial water with lower impact on the environment: Part 4: Treatment of effluents from water desalination stages for reuse and balance of the new technological concept for water desalination[J]. Desalination, 1999, 124(1-3): 205-216. [31] Ghyselbrecht K, Huygebaert M, Van der Bruggen B, et al. Desalination of an industrial saline water with conventional and bipolar membrane electrodialysis[J]. Desalination, 2013, 318: 9-18. [32] Wo?niak M J, Prochaska K. Fumaric acid separation from fermentation broth using nanofiltration (NF) and bipolar electrodialysis (EDBM)[J]. Sep Purif Technol, 2014, 125: 179-186. [33] Prochaska K, Staszak K, WozniakB M J, et al. Nanofiltration, bipolar electrodialysis and reactive extraction hybrid system for separation of fumaric acid from fermentation broth[J]. Bioresour Technol, 2014, 167: 219-225. [34] Liang X, Wang J, Bao H, et al. Accurately-controlled recovery and regeneration of protic ionic liquid after Ionosolv pretreatment via bipolar membrane electrodialysis with ultrafiltration[J]. Bioresour Technol, 2020, 318(3): 124255. [35] Yao J, Wen D, Shen J, et al. Zero discharge process for dyeing wastewater treatment[J]. JWater Process Eng, 2016, 11: 98-103. [36] Nam J-Y, Jwa E, Kim D, et al. Selective removal of multivalent ions from seawater by bioelectrochemical system[J]. Desalination, 2015, 359: 37-40. [37] Heijne A T, Hamelers H, Wilde V D, et al. A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells[J]. Environ Sci Technol, 2006, 40(17): 5200-5205. [38] Kim C, Lee C R, Song Y E, et al. Hexavalent chromium as a cathodic electron acceptor in a bipolar membrane microbial fuel cell with the simultaneous treatment of electroplating wastewater[J]. Chem Eng J, 2017, 328: 703-707. [39] 王魁. 扩散渗析—双极膜电渗析耦合分离回收页岩提钒废酸的研究[D]. 武汉: 武汉科技大学, 2018. [40] Ali M, Rakib M, Laborie S, et al. Coupling of bipolar membrane electrodialysis and ammonia stripping for direct treatment of wastewaters containing ammonium nitrate[J]. JMembr Sci, 2004, 244(1-2): 89-96. [41] 章剑, 钮东方, 胡硕真,等. 双极膜电渗析法处理工业高盐香料废水[J]. 电化学, 2019, 25(6): 708-719. [42] Tran A T K, Mondal P, Lin J, et al. Simultaneous regeneration of inorganic acid and base from a metal washing step wastewater by bipolar membrane electrodialysis after pretreatment by crystallization in a fluidized pellet reactor[J]. J Membr Sci, 2015, 473: 118-127. [43] Shen J, Huang J, Liu L, et al. The use of BMED for glyphosate recovery from glyphosate neutralization liquor in view of zero discharge[J]. J Hazard Mater, 2013, 260: 660-667. [44] Mazrou S, Kerdjoudj H, Cherif A T, et al. Sodium hydroxide and hydrochloric acid generation from sodium chloride and rock salt by electro-electrodialysis[J]. J Appl Electrochem, 1997, 27(5): 558-567. [45] Wilhelm F G, Pünt I, Vegt N, et al. Optimisation strategies for the preparation of bipolar membranes with reduced salt ion leakage in acid-base electrodialysis[J]. J MembrSci, 2001, 182(1-2): 13-28. [46] 黄灏宇, 叶春松. 双极膜电渗析技术在高盐废水处理中的应用[J]. 水处理技术, 2020, 46(6): 4-8. [47] 张淑芳, 刘兆明, 傅荣强, 等. 均相离子交换膜的电渗析水迁移性能研究[J]. 膜科学与技术, 2019, 39(4): 29-37. [48] Rottiers T, Bruggen V d B, Pinoy L. Production of salicylic acid in a three compartment bipolar membrane electrodialysis configuration[J]. JIndEng Chem, 2017, 54: 190-199. [49] Jaimeferrer J, Couallier E, Viers P, et al. Three-compartment bipolar membrane electrodialysis for splitting of sodium formate into formic acid and sodium hydroxide: Role of diffusion of molecular acid[J]. J Membr Sci, 2008, 325(2): 528-536. [50] Reig M, Casas S, Valderrama C, et al. Integration of monopolar and bipolar electrodialysis for valorization of seawater reverse osmosis desalination brines: Production of strong acid and base[J]. Desalination, 2016, 398: 87-97. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号