基于咪唑类离子液体含氟阴离子的调控制备高质子传导率的OPBI共混膜
作者:孙冉鑫,肖意明,沈晓宇,尹振,王松博,张蕾,唐娜
单位: 天津科技大学化工与材料学院,天津 300457
关键词: 离子液体;聚苯并咪唑;质子交换膜;质子传导率
DOI号:
分类号: TM911.47
出版年,卷(期):页码: 2022,42(5):8-16

摘要:
 磷酸掺杂聚苯并咪唑(PA-PBI)膜被认为是最具发展潜力的高温质子交换膜材料之一,但如何制备出高质子传导率的膜材料,仍是PA-PBI高温质子交换膜所面临的挑战性难题。为此,本文通过烷基化反应、离子交换反应,合成了阴离子为PF6-和BF4-的两种咪唑类离子液体([ViEtIm]PF6、[ViEtIm]BF4),通过与芳醚型聚苯并咪唑(OPBI)共混并采用流延法制备了[ViEtIm]PF6/OPBI和[ViEtIm]BF4/OPBI膜,进一步通过红外光谱、热重分析和SEM表征验证了离子液体与OPBI共混膜结构。对共混膜进行高温质子交换膜性能研究,结果表明:[ViEtIm]PF6/OPBI膜综合性能优于[ViEtIm]BF4/OPBI膜及原OPBI膜,特别是在质子传导率方面,[ViEtIm]PF6/OPBI膜的质子传导率高达37.6 mS/cm,分别是[ViEtIm]BF4/OPBI膜和原OPBI膜的1.5倍和4.3倍。
 Phosphoric acid doped polybenzimidazole (PA-PBI) membrane is one of the most promising high-temperature proton exchange membrane materials. The preparation of membrane materials with high proton conductivity is a challenging problem of phosphoric acid doped polybenzimidazole high-temperature proton exchange membrane. In this work, we synthesized two kinds of imidazole ionic liquids ([ViEtIm]PF6 and [ViEtIm]BF4) with anions of PF6- and BF4- through alkylation reaction and ion exchange reaction. The blend membrane were prepared by casting method via co-blending ionic liquids and poly(aryl ether benzimidazole) (OPBI). The structure of the blend membrane was characterized by infrared spectroscopy, thermogravimetric analysis and SEM. The proton conductivity of [ViEtIm]PF6/OPBI membrane is as high as 37.6 mS/cm, which is 1.5 times and 4.3 times that of [ViEtIm]BF4/OPBI membrane and original OPBI membrane. In conclusion, the comprehensive performance of [ViEtIm]PF6/OPBI membrane containing more fluorine structure is better than [ViEtIm]BF4/OPBI membrane and original OPBI membrane, especially in proton conductivity.

基金项目:
天津市高等学校创新团队培养计划(TD13-5008);教育部科研创新团队培育计划(IRT-17R81)

作者简介:
孙冉鑫(1996-),女,汉族,辽宁大连人,研究生,研究方向为燃料电池关键材料,E-mail:2071308701@qq.com

参考文献:
 [1] Hang W, Jza B, Xin N, et al. Recent advances in designing and tailoring nanofiber composite electrolyte membranes for high-performance proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(19):25225-25251.
[2] Thangarasu S, Oh T H. Progress in poly(phenylene oxide) based cation exchange membranes for fuel cells and redox flow batteries applications [J]. International Journal of Hydrogen Energy, 2021, 46(77):38381-38415.
[3] Xu M, Xue H, Wang Q, et al. Sulfonated poly(arylene ether)s based proton exchange membranes for fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(62):31727-31753.
[4] Maiti J, Kakati N, Woo S P, et al. Nafion (R) based hybrid composite membrane containing GO and dihydrogen phosphate functionalized ionic liquid for high temperature polymer electrolyte membrane fuel cell[J]. Composites Science & Technology, 2018, 155(11):189-196.
[5] Ye H, Huang J, Xu J J, et al. New membranes based on ionic liquids for PEM fuel cells at elevated temperatures[J]. Journal of Power Sources, 2008, 178(2):651-660.
[6] Wong C Y, Wong W Y, Ramya K, et al. Additives in proton exchange membranes for low- and high-temperature fuel cell applications: A review[J]. International Journal of Hydrogen Energy, 2019, 44(12):6116-6135.
[7] Ywa B, Xla B, Fan Y C, et al. Achieving high power density and excellent durability for high temperature proton exchange membrane fuel cells based on crosslinked branched polybenzimidazole and metal-organic frameworks[J]. Journal of Membrane Science, 2021, 630(15):119288.
[8] Niu B, Luo S, Lu C, et al. Polybenzimidazole and ionic liquid composite membranes for high temperature polymer electrolyte fuel cells[J]. Solid State Ionics, 2021, 361(17):115569.
[9] 刘凤祥. 聚离子液体/聚苯并咪唑高温质子交换膜的制备与性能研究[D]. 吉林: 长春工业大学,2021.
[10] Xu W, Shuang W, Chang L, et al. Cage-like cross-linked membranes with excellent ionic liquid retention and elevated proton conductivity for HT-PEMFCs[J]. Electrochimica Acta, 2018, 283(6):691-698.
[11] 倪娜. 聚苯并咪唑/倍半硅氧烷/离子液体复合质子交换膜的制备与性能[D]. 武汉: 湖北工业大学,2016.
[12] Liu F, Wang S, Chen H, et al. Cross-Linkable Polymeric Ionic Liquid Improve Phosphoric Acid Retention and Long-Term Conductivity Stability in Polybenzimidazole Based PEMs[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12):16352-16362.
[13] Hooshyari K, Javanbakht M, Adibi M. Novel composite membranes based on dicationic ionic liquid and polybenzimidazole mixtures as strategy for enhancing thermal and electrochemical properties of proton exchange membrane fuel cells applications at high temperature[J]. International Journal of Hydrogen Energy, 2016, 41(25):10870-10883.
[14] Lin B, Yuan W, XU F, et al. Protic ionic liquid/functionalized graphene oxide hybrid membranes for high temperature proton exchange membrane fuel cell applications[J]. Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials, 2018, 455(5):295-301.
[15] Letícia GDT, Letícia Z, Souza J C, et al. Enhancement of sulfonated poly(ether ether ketone)-based proton exchange membranes doped with different ionic liquids cations[J]. Ionics, 2020, 26(11):5661-5672.
[16] Liu S, Zhou L, Wang P J, et al. Ionic-Liquid-Based Proton Conducting Membranes for Anhydrous H2/Cl2 Fuel-Cell Applications[J]. ACS Applied Materials & Interfaces, 2014, 6(5):3195-3200.
[17] Koyilapu R, Singha S, Kutcherlapati S, et al. Grafting of vinylimidazolium-type poly(ionic liquid) on silica nanoparticle through RAFT polymerization for constructing nanocomposite based PEM[J]. Polymer, 2020, 195(3):122458.
[18] Koyilapu R, Singha S, Sana B, et al. Proton exchange membrane prepared by blending polybenzimidazole with poly (aminophosphonate ester)[J]. Polymer Testing, 2020, 85(10):106414.
[19] Yu S, Yan F, Zhang X, et al. Polymerization of ionic liquid-based microemulsions: A versatile method for the synthesis of polymer electrolytes[J]. Macromolecules, 2008, 41(10):3389-3392.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号