PVDF/PSA管式复合纳滤膜的制备与耐酸碱的研究 |
作者:刘恩华,李世鹏 , 李士伟,杨利娟 |
单位: 1.天津工业大学 中空纤维膜材料与膜过程省部共建国家重点实验室,天津 300387; 2.天津海普尔膜科技有限公司,天津 300304 |
关键词: 聚磺酰胺;管式纳滤膜;界面聚合;耐酸碱 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2022,42(5):48-57 |
摘要: |
本文以PVDF管式超滤膜为基膜,以无水哌嗪(PIP)为水相单体、以苯-1,3,5-三磺酰氯(TSC)为有机相单体,通过界面聚合制备PSA复合管式纳滤膜Ⅰ和Ⅱ,研究了添加剂的浓度、水相后吹风时间、有机相反应时间等对分离膜性能的影响,通过FTIR、XPS、SEM对PSA纳滤膜进行了表征。结果表明,制备的PSA纳滤膜Ⅰ和PSA纳滤膜Ⅱ在25℃、0.4MPa下对2000mg/L的MgSO4水溶液的截留率为95%和76%,通量分别为27 L·m-2·h-1和28 L·m-2·h-1;其耐酸碱性从ph=3~11上升为ph=0~14,且在不同浓度的酸碱溶液中浸泡22天,纳滤膜性能依然稳定。 |
In this paper, PSA composite tubular nanofiltration membranes ⅰ and ⅱ were prepared by interfacial polymerization using PVDF tubular ultrafiltration membrane as base membrane, anhydrous piperazine (PIP) as aqueous monomer and benzene-1, 3, 5-trisulfonyl chloride (TSC) as organic monomer. The effects of additive concentration, post-water blowing time and organic reaction time on the performance of PSA nanofiltration membrane were studied. The results showed that the retention rates of PSA NANofiltration membranes I and PSA nanofiltration membranes II to 2000mg/L MgSO4 aqueous solution at 25℃ and 0.4MPa were 95% and 76%, and the fluxes were 27 L·m-2·h-1 and 28 L·m-2·h-1, respectively. Its acid and alkali resistance increased from ph=3~12 to pH =0~14, and the nanofiltration membrane performance remained stable after soaking in different concentrations of acid and alkali solutions for 22 days. |
基金项目: |
天津市科技计划项目(16PTGCCX00070) |
作者简介: |
刘恩华(1973-),男,副研究员,硕士生导师,主要研究方向为管式膜的制备与应用.E-mail:450221508@qq.com |
参考文献: |
[1]LALIA S B et al. A review on membrane fabrication: Structure, properties and performance relationship[J]. Desalination, 2013, 326: 77-95. [2]MOHAMMAD A W, TEOW Y-H, ANG W-L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356226-254. [3]刘恩华,魏飞,赵旭臣. 聚砜管式超滤膜的制备及其结构性能研究[J]. 水处理技术, 2014, 40(12): 44-47. [4]王鹤铭,刘恩华,魏飞. 聚偏氟乙烯-聚酰胺管式复合膜的分离性能研究[J]. 水处理技术, 2021, 47(3): 47-51. [5]Soulier J P , Chabert B , Chauchard J , et al. Synthesis and properties of some polyamides and polysulfonamides[J]. Journal of Applied Polymer Science, 1974. [6]白菊,赖卫,巩莉丽,肖璐琪,罗双江,王国胜,单玲珑. 耐酸型纳滤膜制备及其应用研究进展[J]. 膜科学与术,2022,42(01):180-191. [7]Liu M , Yao G , Cheng Q , et al. Acid stable thin-film composite membrane for nanofiltration prepared from naphthalene-1,3,6-trisulfonylchloride (NTSC) and piperazine (PIP)[J]. Journal of Membrane Science, 2012, 415-416:122-131. [8]Hoseinpour H , Peyravi M , Nozad A , et al. Static and dynamic assessments of polysulfonamide and poly(amide-sulfonamide) acid-stable membranes[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016:453-466. [9]丁晓惠,刘恩华,魏飞. PVDF/PA管式复合纳滤膜的制备及后处理研究[J]. 膜科学与技术, 2019, 39(1): 16-27. [10]LEE S J et al. Interfacial polymerization on hydrophobic PVDF UF membranes surface: Membrane wetting through pressurization[J]. Applied Surface Science, 2015, 356: 1207-1213. [11]LIN J Y et al. A comprehensive physico-chemical characterization of superhydrophilic loose nanofiltration membranes[J]. Journal of Membrane Science, 2016, 501: 1-14. [12]WANG T et al. Effect of non-solvent additives on the morphology and separation performance of poly (m -phenylene isophthalamide) (PMIA) hollow fiber nanofiltration membrane[J]. Desalination, 2015, 365: 293-307. [13]TANNINEN J K, NYSTROM M. Separation of ions in acidic conditions using NF[J]. Desalination, 2002, 147(1): 295-299. [14]VERISSIMO S, PEINEMANN K V, BORDADO J. Influence of the diamine structure on the nanofiltration performance, surface morphology and surface charge of the composite polyamide membranes[J]. Journal of Membrane Science, 2005, 279(1): 266-275. [15]FANG W X, SHI L, WANG R. Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening[J]. Journal of Membrane Science, 2013, 430: 129-139. [16]JI J, MEHTA M. Mathematical model for the formation of thin-film composite hollow fiber and tubular membranes by interfacial polymerization[J]. Journal of Membrane Science, 2001, 192(1): 41-54. [17]DICKSON J M et al. Development of a coating technique for the internal structure of polypropylene microfiltration membranes[J]. Journal of Membrane Science, 1998, 148(1): 25-36. [18]廖联安,郭奇珍.4-二甲氨基吡啶的合成及其催化的有机反应[J].合成化学,1995(03):215-221. [19]XIAO M, CHEN P L, ZHOU M, et al. Tight Ultrafiltration Ceramic Membrane for Separation of Dyes and Mixed Salts (both NaCl/Na2SO4) in Textile Wastewater Treatment[J]. Journal of Engineering, 2017, 56(24): 7070-7079. [20]AUDDY K, DE S et al. Flux enhancement in nanofiltration of dye solution using turbulent promoters[J]. Separation and Purification Technology, 2004, 40(1): 31-39. [21]NAKARI et al. Permeability of dilute ionic liquid solutions through a nanofiltration membrane – Effect of ionic liquid concentration, filtration pressure and temperature[J]. Separation and Purification Technology, 2016, 163: 267-274. [22]YU S C et al. Study on polyamide thin-film composite nanofiltration membrane by interfacial polymerization of polyvinylamine (PVAm) and isophthaloyl chloride (IPC)[J]. Journal of Membrane Science, 2011, 379(1): 164-173. [23]TANG Y J et al. A chlorine-tolerant nanofiltration membrane prepared by the mixed diamine monomers of PIP and BHTTM[J]. Journal of Membrane Science, 2016, 498: 374-384. [24]TRUSHINSKI B J et al. Polysulfonamide thin-film composite reverse osmosis membranes[J]. Journal of Membrane Science, 1998, 143(1): 181-188. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号