PVDF/分子筛离子交换膜制备与盐差发电性能研究 |
作者:程浩,陈文翔,诸葛祥群,丁正平,罗鲲 |
单位: 常州市动力电池智能制造高技术重点实验室,常州大学材料科学与工程学院,常州213164 |
关键词: 分子筛,PVDF膜,掺杂改性,盐差发电 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2022,42(5):94-101 |
摘要: |
反电渗析盐差发电是一种新型有潜力的发电方法,其中离子交换膜是盐差发电核心部件,其电化学和物理化学特性决定盐差发电性能。采用相转换法制备了PVDF/分子筛基膜,然后接枝苯乙烯并磺化,得到PVDF/分子筛复合离子交换膜。实验结果表明,PVDF/分子筛复合离子交换膜中分子筛的最佳添加量为1%,此膜的含水率为45.8%、电阻为11.4 Ω/cm2,离子传导率为2.17×10-3 S/cm2,离子交换容量为2.5 mM/g,对比商业阳离子交换膜,盐差发电功率从0.87 W/m2提升到1.05 W/m2,提高了20%。 |
Reverse electrodialysis is a new power generation method with potential for research and development. Ion exchange membrane is the core component of reverse electrodialysis power generation, and its electrochemical and physicochemical properties determine the power generation performance. PVDF/molecular sieve composite membrane was prepared by phase conversion method, and then styrene was grafted and sulfonated to obtain PVDF/molecular sieve composite ion exchange membrane. The experimental results show that the optimum addition of molecular sieve in PVDF/molecular sieve composite ion exchange membrane is 1%, the water content of the membrane is 45.8%, the resistance is 11.4 Ω/cm2 and the ion conductivity is 2.17×10-3 S/cm2, the ion exchange capacity is 2.5 mM/g. Compared with commercial cation exchange membrane, the salt difference power generation is increased from 0.87 W/m2 to 1.05 W/m2, with an increase of 20%. |
基金项目: |
国家自然科学基金(51874051,52111530139)、常州市应用基础研究项目(CJ20210079)、常州市科技项目(CQ20204034)和广西科技计划重点研发项目(桂科AB17292017) |
作者简介: |
程浩(1997-),男,江苏南通,硕士研究生,研究方向为新能源材料与技术,E-mail:943470367@qq.com |
参考文献: |
[1]董伟. “碳达峰、碳中和”背景下绿色工厂评价的新要求[J]. 质量与认证, 2021: 55–57. [2]张仂, 孟兴智, 潘文琦. 盐差能利用趋势[J]. 盐科学与化工, 2021: 1–3. [3]GULER E, ZHANG Y, SAAKES M, et al. Tailor-Made Anion-Exchange Membranes for Salinity Gradient Power Generation Using Reverse Electrodialysis[J]. ChemSusChem, 2012, 5(11): 2262–2270. [4]邓会宁, 何云飞, 胡柏松等. 反电渗析法盐差能发电用离子交换膜研究进展[J]. 化工进展, 2017: 224–231. [5]VEERMAN J, SAAKES M, METZ S J, et al. Reverse Electrodialysis: Performance of a Stack with 50 Cells on the Mixing of Sea and River Water[J]. Journal of Membrane Science, 2009, 327(1–2): 136–144. [6]VERMAAS D A, SAAKES M, NIJMEIJER K. Power Generation Using Profiled Membranes in Reverse Electrodialysis[J]. Journal of Membrane Science, 2011, 385–386: 234–242. [7]耿道静. 离子交换膜的研究进展[J].西部皮革,2017,39(04):2-5. [8]KANG G, CAO Y. Application and Modification of Poly(Vinylidene Fluoride) (PVDF) Membranes – A Review[J]. Journal of Membrane Science, 2014, 463: 145–165. [9]LIU F, HASHIM N A, LIU Y, et al. Progress in the Production and Modification of PVDF Membranes[J]. Journal of Membrane Science, 2011, 375(1–2): 1–27. [10]SUBOCHEV P, PRUDNIKOV M, VOROBYEV V, et al. Wideband linear detector arrays for optoacoustic imaging based on polyvinylidene difluoride films[J]. Journal of Biomedical Optics, 2018, 23(09): 1. [11]YAN L, LI Y S, XIANG C B. Preparation of Poly(Vinylidene Fluoride)(Pvdf) Ultrafiltration Membrane Modified by Nano-Sized Alumina (Al2O3) and Its Antifouling Research[J]. Polymer, 2005, 46(18): 7701–7706. [12]DRIOLI E, MACEDONIO F. Membrane Engineering for Water Engineering[J]. Industrial & Engineering Chemistry Research, 2012, 51(30): 10051–10056. [13]余宗学, 曾广勇, 潘洋等. 纳米Al2O3和TiO2对PVDF膜结构与性能的影响[J]. 工程塑料应用, 2015: 11–15. [14]Sakarkar S, Muthukumaran S, Jegatheesan V. Tailoring the Effects of Titanium Dioxide (TiO2) and Polyvinyl Alcohol (PVA) in the Separation and Antifouling Performance of Thin-Film Composite Polyvinylidene Fluoride (PVDF) Membrane[J]. Membranes, 2021, 11(4): 241. [15]HONG J G, GLABMAN S, CHEN Y. Effect of Inorganic Filler Size on Electrochemical Performance of Nanocomposite Cation Exchange Membranes for Salinity Gradient Power Generation[J]. Journal of Membrane Science, 2015, 482: 33–41. [16]穆永信, 王三反, 王挺等. 离子交换膜改性的研究进展[J]. 膜科学与技术, 2013: 119–122. [17]张学敏. PVDF磺化阳离子交换膜的制备、表征与应用研究[D]. 兰州交通大学. 2019. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号