膜蒸馏用抗污染PVDF复合膜的制备与研究 |
作者:晋墩尚,谢松辰,李志霞,宋旭峰,彭跃莲 |
单位: 北京工业大学 环境与生命学部,北京 100124 |
关键词: PVDF中空纤维膜;浸渍涂覆-固化;抗污染;抗结垢;膜蒸馏 |
DOI号: |
分类号: TQ 028 |
出版年,卷(期):页码: 2022,42(5):129-138 |
摘要: |
提高膜表面的疏水化及液体进入压力(Liquid entry pressure,LEP)是减缓膜蒸馏过程中膜污染问题的有效策略。本研究以聚偏氟乙烯(Polyvinylidene fluoride,PVDF)中空纤维膜为基膜,采用浸渍涂覆-固化法将乳液组装到PVDF膜表面,制备了具有抗污染性能的复合膜。探究了涂覆时间对膜的形貌及性能的影响,并考察了复合膜的抗污染和抗结垢性能。结果表明,当涂覆时间为20min时,复合膜的水接触角达到115°,LEP值达到0.75MPa。在DCMD浓缩实验中,复合膜在分别处理3.5%wt NaCl、50mg/L的HA和14.7mM CaSO4水溶液时,膜通量稳定,冷凝液电导率保持在10μS/cm以内,表现出优异的抗污染和抗结垢性能。 此外,考察了中空纤维复合膜的稳定性。结果表明,复合膜在浓缩3.5%wt NaCl水溶液时,膜通量为16kg/m2h,冷凝液电导率保持在15μS/cm以内,表现出良好的长期稳定性能。 |
Hydrophobization of membrane surface and high LEP are effective strategies to mitigate membrane fouling during membrane distillation. The composite membranes with anti-fouling properties were prepared by anchoring the emulsion on the PVDF hollow fiber porous membrane surface using the dip-coating-curing method. The effects of coating time on the morphology and properties of the membranes were investigated, and the anti-scaling and anti-fouling properties of the composite membranes were studied. The results showed that when the coating time was 20 min, the contact angle of the composite membrane reached 115° and the LEP reached 0.75 MPa. In the DCMD concentration experiment, the composite membrane maintained the flux when treating 3.5% wt NaCl, 50 mg/L HA and 14.7 mM CaSO4 aqueous solution, respectively, showing excellent anti-fouling and anti-scaling performance. In addition, the stability of hollow fiber composite membrane was investigated. The results show that when the hollow fiber composite membrane concentrates 3.5%wt NaCl aqueous solution, the osmotic flux is 16kg/m2h, and the condensate conductivity is less than 15μS/cm, showing good long-term stability. |
基金项目: |
项目来源“VMD-过热蒸汽干燥热敏性物料中的膜及过程研究”(21878005)。 |
作者简介: |
晋墩尚(1995-06),男,籍贯:山东省菏泽市,硕士研究生,研究方向:膜蒸馏中膜的制备与应用研究,E-mail:17863659593@163.com。 |
参考文献: |
[1] Piadeh F, Moghaddam M R A, Mardan S. Present situation of wastewater treatment in the Iranian industrial estates: Recycle and reuse as a solution for achieving goals of eco-industrial parks[J]. Resources Conservation and Recycling, 2014, 92: 172-178. [2] Shaffer D L, Chavez L H A, Ben-Sasson M, et al. Desalination and Reuse of High-Salinity Shale Gas Produced Water: Drivers, Technologies, and Future Directions[J]. Environmental Science & Technology, 2013, 47(17): 9569-9583. [3] Tong T Z, Elimelech M. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions[J]. Environmental Science & Technology, 2016, 50(13): 6846-6855. [4] Gryta M, Grzechulska-Damszel J, Markowska A, et al. The influence of polypropylene degradation on the membrane wettability during membrane distillation[J]. Journal of Membrane Science, 2009, 326(2): 493-502. [5] Laqbaqbi M, Garcia-Payo M C, Khayet M, et al. Application of direct contact membrane distillation for textile wastewater treatment and fouling study[J]. Separation and Purification Technology, 2019, 209: 815-825. [6] Wang Z W, Ma J X, Tang C Y Y, et al. Membrane cleaning in membrane bioreactors: A review[J]. Journal of Membrane Science, 2014, 468: 276-307. [7] Zhao F, Ma Z B, Xiao K, et al. Hierarchically textured superhydrophobic polyvinylidene fluoride membrane fabricated via nanocasting for enhanced membrane distillation performance[J]. Desalination, 2018, 443: 228-236. [8] Zheng G T, Yao L, You X F, et al. Effects of different secondary nano-scaled roughness on the properties of omniphobic membranes for brine treatment using membrane distillation[J]. Journal of Membrane Science, 2021, 620:118918-118928. [9] Malysheva A, Lombi E, Voelcker N H. Bridging the divide between human and environmental nanotoxicology[J]. Nature Nanotechnology, 2015, 10(10): 835-844. [10] Huang X, Wen X, Cheng J, et al. Sticky superhydrophobic filter paper developed by dip-coating of fluorinated waterborne epoxy emulsion[J]. Applied Surface Science, 2012, 258(22): 8739-8746. [11] Li X, Shan H, Cao M, et al. Facile fabrication of omniphobic PVDF composite membrane via a waterborne coating for anti-wetting and anti-fouling membrane distillation[J]. Journal of Membrane Science, 2019, 589: 117262-117276. [12] Wang S F, Li J, Suo J P, et al. Surface modification of porous poly(tetrafluoraethylene) film by a simple chemical oxidation treatment[J]. Applied Surface Science, 2010, 256(7): 2293-2298. [13] Wu Y K, Ma J Z, Liu C, et al. Surface Modification Design for Improving the Strength and Water Vapor Permeability of Waterborne Polymer/SiO2 Composites: Molecular Simulation and Experimental Analyses[J]. Polymers, 2020, 12(1) :170-186. [14] 李虎, 范晔, 李玉花, et al. 纳米改性丙烯酸树脂防腐涂料的制备及应用[J].中国涂料, 2021, 36(04): 53-58. [15] Chang P Y, Lin W C, Cheng W H, et al. UV-curable TiO2-polyacrylate composites for a dental implant simulation platform[J]. Materials Today Communications, 2021, 27: 102310-102319. [16] Zhao C, Zhao J, Li X, et al. Probing structure-antifouling activity relationships of polyacrylamides and polyacrylates[J]. Biomaterials, 2013, 34(20): 4714-4724. [17] Jayaraman R, Vickraman P, Subramanian N M V, et al. A.C impedance, XRD, DSC, FTIR studies on PbTiO3 dispersoid pristine PVdF-co-HFP and PEMA blended PVdF-co-HFP microcomposite electrolytes[J]. Journal of Non-Crystalline Solids, 2016, 435: 27-32. [18] Routh A F. Drying of thin colloidal films[J]. Reports on Progress in Physics, 2013, 76(4) :46603-46634. [19] Silva R D, Ramlow H, Santos B D, et al. Membrane Distillation: Experimental evaluation of Liquid Entry Pressure in commercial membranes with textile dye solutions[J]. Journal of Water Process Engineering, 2021, 44:102339-102347. [20] Xie S, Li Z, Wong N H, et al. Gypsum scaling mechanisms on hydrophobic membranes and its mitigation strategies in membrane distillation[J]. Journal of Membrane Science, 2022, 648: 120297-120306. [21] Han L, Xiao T, Tan Y Z, et al. Contaminant rejection in the presence of humic acid by membrane distillation for surface water treatment[J]. Journal of Membrane Science, 2017, 541: 291-299. [22] Cui X, Choo K-H. Natural Organic Matter Removal and Fouling Control in Low-Pressure Membrane Filtration for Water Treatment[J]. Environmental Engineering Research, 2014, 19(1): 1-8. [23] Li J, Wu J, Sun H, et al. Advanced treatment of biologically treated coking wastewater by membrane distillation coupled with pre-coagulation[J]. Desalination, 2016, 380: 43-51. [24] Chen Y, Lu K J, Chung T-S. An omniphobic slippery membrane with simultaneous anti-wetting and anti-scaling properties for robust membrane distillation[J]. Journal of Membrane Science, 2020, 595:117572-117582. [25] Xie M, Gray S R. Gypsum scaling in forward osmosis: Role of membrane surface chemistry[J]. Journal of Membrane Science, 2016, 513: 250-259. [26] Su M, Bai Y, Han J, et al. Adhesion of gypsum crystals to polymer membranes: Mechanisms and prediction[J]. Journal of Membrane Science, 2018, 566: 104-111. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号