离子交换树脂预处理缓解反渗透膜结垢的研究
作者:梁 正,燕梦莹,李 隽,黄满红
单位: 东华大学 环境科学与工程学院,生态纺织教育部重点实验室,上海201620
关键词: 离子交换树脂;反渗透;印染废水;膜结垢
DOI号:
分类号: TQ 028 X703.1
出版年,卷(期):页码: 2022,42(5):146-153

摘要:
 采用离子交换树脂进行预处理减轻反渗透的膜结垢,通过优化离子交换树脂处理工艺,研究了预处理后的废水对反渗透膜结垢的影响,利用扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)等表征手段分析其影响反渗透膜结垢的机理。结果表明,离子交换树脂预处理处理对二沉池出水的硬度的去除率可达98%以上,碱性条件有利于离子交换树脂对重金属Sb的去除,离子交换树脂浓度为200 g/L时,对Ca、Mg和Sb元素的去除率分别可达98.31%、99.46%和66.76%。经过离子交换树脂处理后的反渗透通量有所提升,初始通量从32.53 L·m-2·h-1提升到39.57 L·m-2·h-1,提升了21.65%。SEM、FTIR等表征结果表明,离子交换树脂对Ca、Mg的有效去除降低了反渗透膜的结垢,研究结果可为印染废水反渗透深度处理提供技术参考。
  The ion exchange resin was used for pretreatment to reduce membrane scaling in reverse osmosis. The effect of pretreated wastewater on reverse osmosis membrane scaling was studied by optimizing the ion exchange resin treatment process, and the mechanism of its effect on reverse osmosis membrane scaling was analyzed by means of scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR) and other characterization methods. The results showed that the ion exchange resin pretreatment treatment could remove more than 98% of the hardness of the secondary sedimentation tank effluent, and the alkaline conditions were favorable to the removal of heavy metal Sb by ion exchange resin, and the removal efficiency of Ca, Mg and Sb elements could reach 98.31%, 99.46% and 66.76%, respectively, when the ion exchange resin concentration was 200 g/L. The initial flux increased from 32.53 L·m-2·h-1 to 39.57 L·m-2·h-1 after ion exchange resin treatment. This study can provide technical reference for the deep treatment of printing and dyeing waste water by reverse osmosis.

基金项目:
国家重点研发计划(2019YFC0408304),中央高校基本科研业务费专项资金((2232022G-04)

作者简介:
梁正(1996-),男,山东威海人,硕士研究生,研究方向:反渗透的组合工艺及其应用。E-mail: exw312910@163.com

参考文献:
 [1] CHEN H, YU X, WANG X, et al. Dyeing and finishing wastewater treatment in China: State of the art and perspective [J]. Journal of Cleaner Production, 2021, 326: 129353.
[2] ANIS S F, HASHAIKEH R, HILAL N. Reverse osmosis pretreatment technologies and future trends: A comprehensive review [J]. Desalination, 2019, 452: 159-95.
[3] GUO Y, LIU C, LIU H, et al. Contemporary antibiofouling modifications ofreverse osmosis membranes: State-of-the-art insights on mechanisms and strategies [J]. Chemical Engineering Journal, 2022, 429: 132400.
[4] LIU C, WANG W, YANG B, et al. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies [J]. Water Research, 2021, 195: 116976.
[5] OTITOJU T A, SAARI R A, AHMAD A L. Progress in the modification of reverse osmosis (RO) membranes for enhanced performance [J]. Journal of Industrial and Engineering Chemistry, 2018, 67: 52-71.
[6] 屈阁, 王志, 樊智锋, et al. 混凝-砂滤-微滤-反渗透集成技术深度处理抗生素制药废水 [J]. 膜科学与技术, 2008, (03): 72-8.
[7] CHEN G-Q, WU Y-H, TAN Y-J, et al. Pretreatment for alleviation of RO membrane fouling in dyeing wastewater reclamation [J]. Chemosphere, 2022, 292: 133471.
[8] YIN Y, KALAM S, LIVINGSTON J L, et al. The use of anti-scalants in gypsum scaling mitigation: Comparison with membrane surface modification and efficiency in combined reverse osmosis and membrane distillation [J]. Journal of Membrane Science, 2022, 643: 120077.
[9] BATSANOV S S. Thermodynamic determination of van der Waals radii of metals [J]. Journal of Molecular Structure, 2011, 990(1): 63-6.
[10] BONDI A. van der Waals Volumes and Radii [J]. The Journal of Physical Chemistry, 1964, 68(3): 441-51.
[11] NASCIMENTO M. The nature of the chemical bond [J]. Journal of the Brazilian Chemical Society, 2007, 19: 245-56.
[12] KO?ODY?SKA D. The effect of the novel complexing agent in removal of heavy metal ions from waters and waste waters [J]. Chemical Engineering Journal, 2010, 165(3): 835-45.
[13] STEFAN D S, MEGHEA I. Mechanism of simultaneous removal of Ca2+, Ni2+, Pb2+ and Al3+ ions from aqueous solutions using Purolite® S930 ion exchange resin [J]. Comptes Rendus Chimie, 2014, 17(5): 496-502.
[14] LIU M, YU C, WU Y, et al. In situ modification of polyamide reverse osmosis membrane module for improved fouling resistance [J]. Chemical Engineering Research and Design, 2019, 141: 402-12.
[15] RATHINAM K, MODI A, SCHWAHN D, et al. Surface grafting with diverse charged chemical groups mitigates calcium phosphate scaling on reverse osmosis membranes during municipal wastewater desalination [J]. Journal of Membrane Science, 2022, 647: 120310.
[16] FREGER V, GILRON J, BELFER S. TFC polyamide membranes modified by grafting of hydrophilic polymers: An FT-IR/AFM/TEM study [J]. Journal of Membrane Science, 2002, 209(1): 283-92.
[17] YU S, ZHANG X, LI F, et al. Influence of trace cobalt(II) on surfactant fouling of PVDF ultrafiltration membrane [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518: 130-8.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号