咪唑鎓功能化长侧链聚苯醚阴离子膜的制备与性能研究 |
作者:高莉,焉晓明,贺高红 |
单位: 大连理工大学 精细化工国家重点实验室 膜科学与技术研究中心 化工学院,辽宁大连, 116024 |
关键词: 阴离子膜;聚苯醚;咪唑鎓;电解水制氢 |
DOI号: |
分类号: TQ028; TM912.1 |
出版年,卷(期):页码: 2022,42(6):1-6 |
摘要: |
以聚苯醚(PPO)为基材,与4-氟苯甲酰氯进行酰基化反应,接入4-氟苯甲酮侧链,而后与2-(4-羟苯基)乙醇进行缩合反应,再对醇羟基进行溴代,最后接入1,2-二甲基咪唑,得到了离子交换容量(IEC)为1.13-1.63 mmol g−1的咪唑鎓功能化长侧链PPO膜。膜的溶胀度和吸水率均随着IEC的增大而增大,而温度对其影响较小,仅IEC为1.63 mmol g−1的膜在80℃时变化相对明显。QPPO-PEImOH膜的离子传导率随着IEC的增加而增大,80℃时最高可以达到62 mS cm−1。QPPO-PEImOH膜具有良好的碱稳定性,在60℃碱稳定性测试168 h后,其IEC保留率为93%。将QPPO-PEImOH膜用于电解水制氢,在1 M KOH、温度为50 oC和电压为2.0 V时电流密度达到698 mA/cm2。 |
Imidazolium-functionalized long side chain PPO membranes (QPPO-PEImOH) was prepared by acylation, condensation, hydroxyl substitution by bromine, and subsequent functionalization. The ion exchange capacity (IEC) determined by back titration was 1.13–1.63 mmol g−1. The swelling ratio and water uptake of QPPO-PEImOH increased with the IEC, while it was insensitive to temperature change. The ionic conductivity of QPPO-PEImOH reached 62 mS cm−1 at 80 °C. In addition, QPPO-PEImOH showed good alkaline stability. The retention of IEC was 93% after immersing in 1 M NaOH for 168 h at 60 oC. The assembled AEM electrolyser achieve a current density of 698 mA/cm2 at 2.0 V and 50 °C under 1 M KOH-fed conditions. |
基金项目: |
国家自然科学基金委创新研究群体项目(22021005)。 |
作者简介: |
高莉(1991-),女,山东淄博,博士研究生,阴离子膜 |
参考文献: |
[1] 马紫峰, 贺益君, 陈建峰, 新能源化工技术[J], 化工进展, 2021, 40: 4687-4695. [2] Yue M L, Lambert H, Pahon E, Roche R, Jemei S, Hissel D, Hydrogen energy systems: A critical review of technologies, applications, trends and challenges[J], Renewable & Sustainable Energy Reviews, 2021, 146: 21. [3] Olabi A G, Bahri A S, Abdelghafar A A, Baroutaji A, Sayed E T, Alami A H, Rezk H, Abdelkareem M A, Large-vscale hydrogen production and storage technologies: Current status and future directions[J], Int J Hydrogen Energ, 2021, 46: 23498-23528. [4] 王培灿, 万磊, 徐子昂, 许琴, 王保国, 碱性膜电解水制氢技术现状与展望[J], 化工学报, 2021, 72: 6161-6175. [5] 何泽兴, 史成香, 陈志超, 潘伦, 黄振峰, 张香文, 邹吉军, 质子交换膜电解水制氢技术的发展现状及展望[J], 化工进展, 2021, 40: 4762-4773. [6] 万磊, 徐子昂, 王培灿, 许琴, 王保国, 电解水制氢的耐碱离子膜研究进展[J], 化工进展, 2022, 41: 1556-1568. [7] Chen N J, Lee Y M, Anion-conducting polyelectrolytes for energy devices[J], Trends in Chemistry, 2022, 4: 236-249. [8] Yan X M, He G H, Gu S, Wu X M, Du L G, Wang Y D, Imidazolium-functionalized polysulfone hydroxide exchange membranes for potential applications in alkaline membrane direct alcohol fuel cells[J], Int J Hydrogen Energ, 2012, 37: 5216-5224. [9] Ran J, Wu L, Ru Y F, Hu M, Din L, Xu T W, Anion exchange membranes (AEMs) based on poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and its derivatives[J], Polym Chem-Uk, 2015, 6: 5809-5826. [10] Yang Z J, Zhou J H, Wang S W, Hou J Q, Wu L, Xu T W, A strategy to construct alkali-stable anion exchange membranes bearing ammonium groups via flexible spacers[J], J Mater Chem A, 2015, 3: 15015-15019. [11] Marino M G, Kreuer K D, Alkaline Stability of Quaternary Ammonium Cations for Alkaline Fuel Cell Membranes and Ionic Liquids[J], Chemsuschem, 2015, 8: 513-523. [12] Arges C G, Ramani V, Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes[J], Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 2490-2495. [13] 王雪, 李永纲, 郑吉富, 张所波, 李胜海, 主链结构对阴离子交换膜碱稳定性的影响[J], 膜科学与技术, 2022, 42: 117-127. [14] 王凯锋, 焉晓明, 贺高红, 季铵化聚芳吲哚阴离子膜的制备[J], 膜科学与技术, 2019, 39: 15-20+28. [15] Lin C X, Wu H Y, Li L, Wang X Q, Zhang Q G, Zhu A M, Liu Q L, Anion Conductive Triblock Copolymer Membranes with Flexible Multication Side Chain[J], Acs Appl Mater Inter, 2018, 10: 18327-18337. [16] Lin C X, Wang X Q, Hu E N, Yang Q, Zhang Q G, Zhu A M, Liu Q L, Quaternized triblock polymer anion exchange membranes with enhanced alkaline stability[J], J Membrane Sci, 2017, 541: 358-366. [17] 朱兆宇, 张秋根, 朱爱梅, 刘庆林, 萘基侧链型阴离子交换膜的制备[J], 膜科学与技术, 2022, 42: 33-40. [18] Cha M S, Park J E, Kim S, Han S H, Shin S H, Yang S H, Kim T H, Yu D M, So S Y, Hong Y T, Yoon S J, Oh S G, Kang S Y, Kim O H, Park H S, Bae B, Sung Y E, Cho Y H, Lee J Y, Poly(carbazole)-based anion-conducting materials with high performance and durability for energy conversion devices[J], Energ Environ Sci, 2020, 13: 3633-3645. [19] Hyun J, Yang S H, Doo G, Choi S, Lee D-H, Lee D W, Kwen J, Jo W, Shin S-H, Lee J Y, Kim H-T, Degradation study for the membrane electrode assembly of anion exchange membrane fuel cells at a single-cell level[J], J Mater Chem A, 2021, 9: 18546-18556. [20] Gao L, He G H, Pan Y, Zhao B L, Xu X W, Liu Y J, Deng R L, Yan X M, Poly(2,6-dimethyl-1,4-phenylene oxide) containing imidazolium-terminated long side chains as hydroxide exchange membranes with improved conductivity[J], J Membrane Sci, 2016, 518: 159-167. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号