胺类化合物对聚氯乙烯膜的亲水化改性研究 |
作者:高海富,刘四华,厍景国,宋姿萍,周庆莹,王暄,武春瑞,吕晓龙 |
单位: (省部共建分离膜与膜过程国家重点实验室,材料科学与工程学院,天津工业大学,天津 300387) |
关键词: 聚氯乙烯;超滤膜;亲水化;膜污染;葡甲胺 |
出版年,卷(期):页码: 2022,42(6):7-13 |
摘要: |
便捷高效的亲水化是提高超滤膜性能的关键。本文将多羟基胺类单体(葡甲胺、三异丙醇胺和2,2-双(羟甲基)-2,2',2''-次氮基三乙醇)作为接枝分子引入PVC铸膜液中,在溶解过程实现了PVC链的亲水化。重点研究了单体的分子结构对PVC膜亲水性、机械强度和纯水通量等性能的影响。结果表明,PVC膜的亲水性明显提高,孔径适度减小,并且在不影响膜的机械强度的前提下使膜的纯水通量提升了近3.3倍,BSA截留率提升了26%。 |
Convenient and efficient hydrophilization is the key to improve the performance of ultrafiltration membranes. Herein, polyhydroxyamine monomers (N-Methyl-D-Glucoamine, Triisopropanolamine and Bis(2-hydroxymethyl)-tris(hydroxymethyl)- methane) were introduced into PVC casting solution as graft molecules to realize the hydrophilization of the PVC chain in the dissolution process. The effects of monomer structure on the hydrophilicity, mechanical strength and separation properties of PVC membranes were studied. The results showed that the hydrophilicity of the PVC membrane was improved obviously with moderate pore size decrease. Approximately 3.3times flux increase, 26% BSA rejection enhance were obtained simultaneously, with stable mechanical properties. |
高海富(1995-),男,河南商丘市人,硕士研究生,研究方向为分离膜制备与应用 |
参考文献: |
[1] GAO W, LIANG H, MA J, et al. Membrane fouling control in ultrafiltration technology for drinking water production: A review [J]. Desalination, 2011, 272(1-3): 1-8. [2] M C, GALANAKIS. Separation of functional macromolecules and micromolecules: From ultrafiltration to the border of nanofiltration [J]. Trends in Food Science & Technology, 2015, 42(1): 44-63. [3] 黄凯楠, 吉学智, 王飞, 等. 超滤膜技术概述 [J]. 化工进展, 2021, 40(S2): 219-225. [4] CUI Z, DRIOLI E, LEE Y M. Recent progress in fluoropolymers for membranes [J]. Progress in Polymer Science, 2013, 39(1): 164-198. [5] ZHAO C, XUE J, RAN F, et al. Modification of polyethersulfone membranes – A review of methods [J]. Progress in Materials Science, 2013, 58(1): 76-150. [6] ZHANG X, CHEN Y, KONSOWA A H, et al. Evaluation of an innovative polyvinyl chloride (PVC) ultrafiltration membrane for wastewater treatment [J]. Separation and Purification Technology 2009, 70(1): 71-78. [7] GUO W S, NGO H H, LI J X. A mini-review on membrane fouling [J]. Bioresource Technol, 2012, 122: 27-34. [8] PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity [J]. Science, 2017, 356(6343). [9] CHENG Y Y, DU C H, WU C J, et al. Improving the hydrophilic and antifouling properties of poly(vinyl chloride) membranes by atom transfer radical polymerization grafting of poly(ionic liquid) brushes [J]. Polymers for Advanced Technologies, 2017, 1-9. [10] FANG L-F, MATSUYAMA H, ZHU B-K, et al. Development of antifouling poly(vinyl chloride) blend membranes by atom transfer radical polymerization [J]. Journal of Applied Polymer Science, 2017, 1-12. [11] RAJABZADEH S, SANO R, ISHIGAMI T, et al. Preparation of hydrophilic vinyl chloride copolymer hollow fiber membranes with antifouling properties [J]. Applied Surface Science, 2015, 324: 718-724. [12] ZHU J, SU Y, ZHAO X, et al. Improved Antifouling Properties of Poly(vinyl chloride) Ultrafiltration Membranes via Surface Zwitterionicalization [J]. Industrial & Engineering Chemistry Research, 2014, 53(36): 14046-14055. [13] WU H, LI T, LIU B, et al. Blended PVC/PVC-g-PEGMA ultrafiltration membranes with enhanced performance and antifouling properties [J]. Applied Surface Science, 2018, 455:987-996. [14] 邱海龙, 吕晓龙, 武春瑞,等. 一种筋线增强型聚偏氟乙烯中空纤维膜纺丝条件对膜结构与性能的影响研究 [J]. 膜科学与技术, 2019, 039(004): 21-28. [15] High-performance chlorinated polyvinyl chloride ultrafiltration membranes prepared by compound additives regulated non-solvent induced phase separation [J]. Journal of Membrane Science, 2020, 612:118434. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号