季铵化聚苯醚和UiO-66修饰的类“三明治”结构复合膜的制备 |
作者:阮慧敏,许婧雯,潘能修,高尚上,廖俊斌,沈江南 |
单位: 浙江工业大学 化学工程学院,杭州 310014,中国 |
关键词: 季铵化聚苯醚;UiO-66复合膜;一/二价阴离子分离;电渗析 |
DOI号: |
分类号: O658.6+8 |
出版年,卷(期):页码: 2022,42(6):31-40 |
摘要: |
以阳极氧化铝(AAO)为支撑层,采用季铵化聚苯醚(QPPO)与金属有机框架材料UiO-66-NH2分别对其两侧进行表面修饰,制备了系列类“三明治”结构复合膜并研究了改性层对所制备的复合膜的膜面电阻和亲水性等的影响规律。电渗析测试结果表明:UiO-66-NH2单独作为分离层时,其选择性为=15,显著大于QPPO层的选择性(1)。对于复合膜,其选择性近似,其值为=7.12。UiO-66-NH2的高选择性可归因于其孔尺寸对不同尺寸离子的精确筛分。然而,QPPO改性层较低的选择性限制了复合膜选择性筛分离子的能力,从而导致复合膜单价离子选择性不如单层UiO-66-NH2-AAO膜. |
A series of “sandwich-like” structure composite membranes has been prepared by modifying the anodic alumina (AAO) membrane as support layer with quaternized polyphenylene oxide (QPPO) and UiO-66-NH2, which were used for surface modification on each side, and the influence of the modified layers on the surface resistance and hydrophilicity of the prepared composite films was investigated. Electrodialysis test results show, the investigation demonstrates that the selectivity of UiO-66-NH2 layer is 15, which is higher than that of QPPO layer (1). However, as for the composite membrane, the selectivity of the two as separation layers is approximately (7.12). The high selectivity of UiO-66-NH2 may result from its pore size, which accurately screens ions with different sizes. However, the low selectivity of QPPO layer limits the ability of the composite membrane to selectively screen separators, resulting in that the monovalent ion selectivity of the composite membrane is not as good as that of the monolayer UiO-66-NH2-AAO membrane. |
基金项目: |
浙江省重点研究发展计划(No. 2021C03170);国家自然科学基金项目(No. 21878273和No. 22008214);浙江省自然科学基金资助项目(No. LQ20B060005). |
作者简介: |
阮慧敏(1976–),女,浙江玉环,副教授,研究生,博士,研究方向为膜法水处理技术、海水综合利用 |
参考文献: |
[1] Lee H, Song J, Moon S. Comparison of electrodialysis reversal (EDR) and electrodeionization reversal (EDIR) for water softening[J]. Desalination, 2013, 314(2):43–49. [2] Sajjad A, Yunus M, Azoddein A, et al. Electrodialysis Desalination for Water and Wastewater: A Review[J]. Chemical Engineering Journal, 2020, 380(15):122231. [3] Mei Y, Tang C. Recent developments and future perspectives of reverse electrodialysis technology: A review[J]. Desalination, 2018, 425(1):156–174. [4] Xu T. Ion exchange membranes: state of their development and perspective[J]. Journal of Membrane Science, 2005, 263(1–2):1–29. [5] Tao L, Said A, Matthias W. Selectivity of ion exchange membranes: a review[J]. Journal of Membrane Science, 2018, 555(1):429–454. [6] Valero F, Arbós R. Desalination of brackish river water using electrodialysis reversal (EDR): control of the THMs formation in the barcelona (NE Spain) area[J]. Desalination, 2010, 253(1–3):170–174. [7] Xu T, Sheng F, Wu B, et al. Ti-exchanged UiO-66-NH2–containing polyamide membranes with remarkable cation permselectivity[J]. Journal of Membrane Science, 2020, 615(1):118608. [8] Yuan N, Gong X, Sun W, et al. Advanced applications of Zr-based MOFs in the removal of water pollutants[J], Chemosphere, 2020, 267:128863. [9] Liao J, Yu X, Chen Q, et al. Monovalent anion selective anion-exchange membranes with imidazolium salt-terminated side-chains: Investigating the effect of hydrophobic alkyl spacer length[J]. Journal of Membrane Science, 2020, 599(1):117818. [10] Sana J, Shahnaz K, Seyedehgolshan H, et al. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions[J]. Journal of Hazardous Materials, 2019, 368(15):10–20. [11] Pang X, Tao Y, Xu Y, et al. Enhanced monovalent selectivity of cation exchange membranes via adjustable charge density on functional layers[J]. Journal of Membrane Science, 2020, 595(1):117544. [12] Lu G, Li S, Guo Z, et al. Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation[J]. Nature Chemistry, 2012(4), 4:310–316. [13] Ding M, Cai X, Jiang H. Improving MOF stability: approaches and applications[J]. Chemical Science, 2019, 10(44):10209–10230. [14] Li J, Sculley J, Zhou H. Metal–organic frameworks for separations[J]. Chemical Reviews, 2012, 112(2):869–932. [15] 张引弓,李福勤,朱敏,李佳宾. 单价选择性阳离子交换膜的制备及工艺优化[J]. 膜科学与技术, 2021, 41(1):57–63. [16] Tanabe K, Cohen S. Postsynthetic modification of metal–organic frameworks—a progress report[J]. Chemical Society Reviews, 2011, 40(2):498–515. [17] Du X, Yi X, Wang P, et al. Robust photocatalytic reduction of Cr(VI) on UiO-66-NH2(Zr/Hf) metal-organic framework membrane under sunlight irradiation[J]. Chemical Engineering Journal, 2019, 356(15):393–399. [18] Jiao L, Seow J, Skinner S W, et al. Metal–organic frameworks: Structures and functional applications[J]. Materials Today, 2019, 27:43–68. [19] 尚鸿飞,鲁金明,刘 毅,杨建华,张 艳. 金属有机骨架ZIF-67膜的制备和表征[J]. 膜科学与技术, 2021, 41(5):73–78. [20] Chun X, Hou C, et al. Metal–organic frameworks for energy[J]. Advanced Energy Materials, 2019, 9(23):180130. [21] Shekhah O, Liu J, Fischer R, et al. MOF thin films: existing and future applications[J]. Chemical Society Reviews, 2011, 40(2):1081–1106. [22] 彭贵宾,金雅丽,徐燕青,廖俊斌,阮慧敏,沈江南. Fe3O4@SiO2-NH2-SO3H复合微球改性阴离子交换膜的制备[J]. 膜科学与技术, 2020, 40(5):54-61. [23] Liu X, Demir N, Wu Z, et al. Highly Water-Stable Zirconium Metal−Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination[J]. Journal of the American Chemical Society, 2015, 137(22):6999–7002. [24] Cavka J, Jakobsen S, Olsbye U, et al. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability[J]. Journal of Materials Chemistry, 2008, 130(42):13850–13851. [25] Tansel B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects[J]. Separation and Purification Technology, 2012, 86(15):119–126. [26] 王乾杰,李红海,苏保卫. PVDF/PI阳离子交换膜的制备及脱盐性能[J]. 膜科学与技术, 2021, 41(1):1–9. [27] Park C, Lee S, Hwang D, et al. Nanocrack-regulated self-humidifying membranes[J]. Nature, 2016, 532(7600):480–483. [28] Zhu B, Sui Y, Wei P, et al. NH2-UiO-66 coated fibers to balance the excellent proton conduction efficiency and significant dimensional stability of proton exchange membrane[J]. Journal of Membrane Science, 2021, 628(15):119214. [29] Zheng Z, Xiao P, Ruan H, et al. Mussel-inspired surface functionalization of AEM for simultaneously improved monovalent anion selectivity and antibacterial property[J]. Membranes, 2019, 9(3):36. [30] Liao J, Ruan H , Gao X, et al. Exploring the acid enrichment application of piperidinium-functionalized cross-linked poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes in electrodialysis[J]. Journal of Membrane Science, 2021, 621(1):118999. [31] He X, Deng F, Shen T, et al. Exceptional adsorption of arsenic by zirconium metal-organic frameworks: Engineering exploration and mechanism insight[J]. Journal of Colloid and Interface Science, 2019, 539(15):223–234. [32] Xu T, Shehzad A, Yu D, et al. Highly Cation Permselective Metal–Organic Framework Membranes with Leaf-Like Morphology[J]. Chemistry Sustainability Energy Materials, 2019, 12(12):2593–2597. [33] Ruan H, Pan N, Wang C, et al. Functional UiO-66 Series Membranes with High Perm Selectivity of Monovalent and Bivalent Anions for Electrodialysis Applications[J]. Industrial Engineering Chemistry Ressearch, 2021, 60(10):4086−4096. [34] Chen Q, Yao Y, Liao J, et al. Subnanometer Ion Channel Anion Exchange Membranes Having a Rigid Benzimidazole Structure for Selective Anion Separation[J]. ACS Nano 2022, 16(3):4629−4641. [35] Zhang F, Zhang H, Qu C. Imidazolium functionalized polysulfone anion exchange membrane for fuel cell application[J]. Journal of Materials Chemistry, 2011, 21(34):12744–12752. [36] Mohanty A, Ryu C, Kim Y, et al. Stable Elastomeric Anion Exchange Membranes Based on Quaternary Ammonium-Tethered Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers[J]. Macromolecules, 2015, 48(19):7085–7095. [37] Yao X, Shen J, Liu Q, et al. A novel electrochemical aptasensor for the sensitive detection of kanamycin based on UiO-66-NH2/MCA/MWCNT@rGONR nanocomposites[J]. Analytical Methods, 2020, 12(41):4967–4976. [38] He X, Deng F, Shen T, et al. Exceptional adsorption of arsenic by zirconium metal-organic frameworks: Engineering exploration and mechanism insight[J]. Journal of Colloid and Interface Science, 2019, 539(15):223–234. [39] Liu Y, Dong C, Liao J, et al. Anti-fouling properties and preparation of anion-exchange membranes based on BPPO modified by different side chain lengths[J]. CIESC Journal, 2021, 72(3):1732–1741. [40] Epsztein R, Shaulsky E, Qin M, et al. Activation behavior for ion permeation in ion-exchange membranes: Role of ion dehydration in selective transport[J]. Journal of Membrane Science, 2019, 580(15):316–326. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号