陶瓷基碳纳米管复合膜的光热膜蒸馏性能研究
作者:贾明娟,姬国钊,董应超
单位: 工业生态与环境工程教育部重点实验室,大连理工大学 环境学院,大连116024
关键词: 陶瓷膜;碳纳米管;光热膜蒸馏;光热转换;脱盐
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2022,42(6):41-47

摘要:
 构筑新型光热多功能蒸馏膜界面具有重要的研究价值,本研究以氧化铝(Al2O3)陶瓷膜作为载体,通过原位化学气相沉积(CVD)过程制备了氧化铝-碳纳米管(Al2O3-CNTs)复合膜,复杂交错的CNTs网络结构同时为复合膜提供了较好的疏水性以及高效的光热转换性能。Al2O3-CNTs膜的氮气渗透性为1135.14 m3/(m2·h·MPa),水接触角达到171.0°,液体浸润压力为0.15 MPa。复合膜在模拟太阳辐照下辐照600 s后,表面温度升高至82.7 ℃,光吸收率最高可达66.2%。通过研究传统膜蒸馏及光热膜蒸馏性能,结果表明,在进料液温度为75 ℃,流速为60 r/min,进料液为质量分数3.5% NaCl溶液的情况下,相比于传统膜蒸馏过程,该复合膜在4个太阳(4 kw/m-2)的光照强度下,通量提升率为33.7%,太阳能利用效率达到22.7%,同时盐截留率(>99.8%)和渗透侧电导率(<60.0 µs/cm)在运行过程中保持稳定,表明特殊设计的Al2O3-CNTs复合膜具有较好的光热膜蒸馏性能。
 Construction of a new photothermal multifunctional membrane interface is of great significance. Alumina (Al2O3) membrane was used as the substrate to prepare ceramic-based carbon nanotubes (Al2O3-CNTs) composite membrane by in situ chemical vapor deposition (CVD) process. The interconnected CNTs network structure provides better superhydrophobicity (water contact angle 171.0°) and efficient photothermal conversion performance for the composite membrane. The nitrogen permeance of Al2O3-CNTs is 1135.14 m3/ (m2·h·Mpa), while the liquid entry pressure is 0.15 MPa. After 600 s irradiation of simulated solar, the surface temperature of the composite membrane increased to 82.7 ℃, and the light absorption rate was 66.2%. The results of traditional and photothermal membrane distillation show that the flux of the composite membrane under 4 kW/m2 solar irradiation is 33.7% higher than that of the traditional membrane distillation for 3.5% NaCl solution (75 ℃, 60 r/min flow rate), and the solar energy utilization efficiency was 22.7%. Both salt rejection (99.8%) and permeate salt concentration remained stable during operation, indicating that Al2O3-CNTs composite membrane has good photothermal membrane distillation performance.

基金项目:
国家重点研发专项项目(2019YFA0705803);国家自然科学基金项目(21876020,52070033)和企业横向课题(HX20190810)

作者简介:
贾明娟(1996-),女,河南郑州,硕士研究生,研究方向为陶瓷基纳米碳复合膜的设计制备及水处理性能研究

参考文献:
 [1] WU X, JIANG Q, GHIM D, et al. Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process [J]. Journal of Materials Chemistry A, 2018, 6(39): 18799-807.
[2] LI W, CHEN Y, YAO L, et al. Fe3O4/PVDF-HFP photothermal membrane with in-situ heating for sustainable, stable and efficient pilot-scale solar-driven membrane distillation [J]. Desalination, 2020, 478.
[3] HUANG J, HU Y, BAI Y, et al. Solar membrane distillation enhancement through thermal concentration [J]. Energy, 2020, 211.
[4] GAO M, PEH C K, MENG F L, et al. Photothermal Membrane Distillation toward Solar Water Production [J]. Small Methods, 2021.
[5] 魏玉梅, 张新妙, 栾金义. 太阳能膜蒸馏技术研究进展 [J]. 现代化工, 2020, 40(05): 42-6.
[6] POLITANO A, DI PROFIO G, FONTANANOVA E, et al. Overcoming temperature polarization in membrane distillation by thermoplasmonic effects activated by Ag nanofillers in polymeric membranes [J]. Desalination, 2019, 451: 192-9.
[7] POLITANO A, ARGURIO P, DI PROFIO G, et al. Photothermal Membrane Distillation for Seawater Desalination [J]. Advanced Materials, 2017, 29(2).
[8] LIU F, LAI Y, ZHAO B, et al. Photothermal materials for efficient solar powered steam generation [J]. Frontiers Of Chemical Science And Engineering, 2019, 13(4): 636-53.
[9] 董应超, 马丽宁, 朱丽, 等. 碳纳米管复合膜的制备及水处理应用研究进展 [J]. 膜科学与技术, 2016: 1-10.
[10] YU Y, CHEN S, JIA Y, et al. Ultra-black and self-cleaning all carbon nanotube hybrid films for efficient water desalination and purification [J]. Carbon, 2020, 169: 134-41.
[11] 武慧, 孙春意, 杨凤林, 等. 莫来石负载碳纳米管复合膜的制备及膜蒸馏性能研究 [J]. 膜科学与技术, 2021: 35-42.
[12] YUAN B, WANG M, WANG B, et al. Cross-linked Graphene Oxide Framework Membranes with Robust Nano-Channels for Enhanced Sieving Ability [J]. Environ Sci Technol, 2020, 54(23): 15442-53.
[13] DONG Y, MA L, TANG C Y, et al. Stable Superhydrophobic Ceramic-Based Carbon Nanotube Composite Desalination Membranes [J]. Nano letters, 2018, 18(9): 5514-21.
[14] SI Y, SUN C, LI D, et al. Flexible Superhydrophobic Metal-Based Carbon Nanotube Membrane for Electrochemically Enhanced Water Treatment [J]. Environ Sci Technol, 2020, 54(14): 9074-82.
[15] WU J, ZODROW K R, SZEMRAJ P B, et al. Photothermal nanocomposite membranes for direct solar membrane distillation [J]. Journal of Materials Chemistry A, 2017, 5(45): 23712-9.
[16] REZAEI M, WARSINGER D M, LIENHARD V J, et al. Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention [J]. Water Res, 2018, 139: 329-52.
[17] ZHU L, DONG X, XU M, et al. Fabrication of mullite ceramic-supported carbon nanotube composite membranes with enhanced performance in direct separation of high-temperature emulsified oil droplets [J]. Journal of Membrane Science, 2019, 582: 140-50.
[18] AN A K, GUO J, JEONG S, et al. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation [J]. Water Res, 2016, 103: 362-71.
[19] HUANG J, HU Y, BAI Y, et al. Novel solar membrane distillation enabled by a PDMS/CNT/PVDF membrane with localized heating [J]. Desalination, 2020, 489.
[20] CAO S, WU X, ZHU Y, et al. Polydopamine/hydroxyapatite nanowire-based bilayered membrane for photothermal-driven membrane distillation [J]. Journal Of Materials Chemistry A, 2020, 8(10): 5147-56.
[21] WU X, CAO S, GHIM D, et al. A thermally engineered polydopamine and bacterial nanocellulose bilayer membrane for photothermal membrane distillation with bactericidal capability [J]. Nano Energy, 2021, 79.
[22] 陈宇超, 沙畅畅, 王心妤, 等. 基于光热转换的吸收材料与转换机理研究进展 [J]. 能源研究与利用, 2019: 23-31+55.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号