溶剂冲洗对界面聚合制备中空纤维聚酰胺纳滤膜的影响 |
作者:雷建辉,申越,武斌,王乃鑫,安全福 |
单位: 北京工业大学 环境与生命学部,北京 100124 |
关键词: 纳滤;中空纤维;界面聚合;溶剂冲洗;内压式 |
出版年,卷(期):页码: 2022,42(6):48-56 |
摘要: |
以自制的聚砜(PSf)中空纤维超滤膜为基膜,以哌嗪为水相单体,均苯三甲酰氯为有机相单体,在PSf基膜内表面进行界面聚合反应,制备内压式中空纤维聚酰胺纳滤膜。重点研究了溶剂冲洗过程对界面聚合制备中空纤维聚酰胺纳滤膜的影响。此外,考察了哌嗪浓度、均苯三甲酰氯浓度、反应时间等条件对中空纤维纳滤膜脱盐性能的影响,表征了膜表面形貌和化学性质。在最佳条件下制备的内压式中空纤维纳滤膜的纯水渗透通量为124 L/m2 h MPa,截留分子量约为360,对不同无机盐的截留顺序为:Na2SO4(97.71%)>MgSO4(95.08%)>CaCl2(54.44%)>NaCl(16.18%)。 |
The home-made polysulfone (PSf) hollow fiber ultrafiltration membrane was used as substrate to prepare internal pressure hollow fiber nanofiltration membrane through interfacial polymerization reaction. Piperazine was used as the aqueous phase monomer, while trimesoyl chloride was used as the organic phase monomer. The solvent rinse speed was investigated to optimize the nanofiltration performance. Moreover, the preparation conditions such as piperazine concentration, trimesoyl chloride concentration and reaction time were also studied. The surface morphology and chemical structure of the hollow fiber membrane were characterized by SEM and FTIR. Under the optimum conditions, the pure water permeance of the internal pressure hollow fiber nanofiltration membrane was 124 L/m2 h MPa. The order of rejection for different inorganic salts was Na2SO4 (97.71%) > MgSO4 (95.08%) > CaCl2 (54.44%) > NaCl (16.18%). |
雷建辉(1996-),男,湖南郴州人,硕士生,主要从事纳滤膜的制备研究 |
参考文献: |
[1]Fane A, Tang C, Wang R. Membrane technology for water: microfiltration, ultrafiltration, nanofiltration, and reverse osmosis[J]. Treatise on Water Science, 2011, 56(1): 45-57. [2]Baruah K, Hazarika S. Separation of Acetic Acid from Dilute Aqueous Solution by Nanofiltration Membrane[J]. Journal of Applied Polymer Science, 2014, 131(15): 67-82. [3]侯立安, 刘晓芳. 纳滤水处理应用研究现状与发展前景[J]. 膜科学与技术, 2010, 30(04): 1-7. [4]Ji C, Zhai Z, Jiang C, et al. Recent advances in high-performance TFC membranes: a review of the functional interlayers [J]. Desalination, 2021, 500: 1148-1161. [5]Wei X, Xu X, Chen Y, et al. Preparation and properties of hollow fiber nanofiltration membrane with continuous coffee-ring structure[J]. Frontiers of Chemical Science and Engineering, 2020: 1-12. [6]梁懿之, 王肖肖, 李灿,等. 界面聚合法制备高通量复合耐溶剂纳滤膜[J]. 膜科学与技术, 2019, 39(04): 38-46. [7]李红宾, 石文英, 王薇,等. 中空纤维复合纳滤膜的研究进展[J]. 膜科学与技术, 2016, 36(02): 122-131. [8]林亚凯, 汪林, 唐元晖,等. 中空纤维纳滤膜制备方法的研究进展[J]. 膜科学与技术, 2020, 40(03): 128-135 [9]De Grooth J, Haakmeester B, Wever C, et al. Long term physical and chemical stability of polyelectrolyte multilayer membranes[J]. Journal of Membrane Science, 2015, 489: 153-159. [10]Lau W J, Ismail A F, Misdan N, et al. A recent progress in thin film composite membrane: a review[J]. Desalination, 2012, 287: 190-199. [11]Korikov A, Kosaraju P, Sirkar K. Interfacially polymerized hydrophilic microporous thin film composite membranes on porous polypropylene hollow fibers and flat films[J]. Journal of Membrane Science, 2006, 279(1-2): 588-600. [12]Yoon S-H, Lee S, Yeom I-T. Experimental verification of pressure drop models in hollow fiber membrane[J]. Journal of Membrane Science, 2008, 310(1-2): 7-12. [13]Verissimo S, Peinemann K V, Bordado J. Thin-film composite hollow fiber membranes: an optimized manufacturing method[J]. Journal of Membrane Science, 2005, 264(1-2): 48-55. [14]Yang F, Zhang S, Yang D, et al. Preparation and characterization of polypiperazine amide/PPESK hollow fiber composite nanofiltration membrane[J]. Journal of Membrane Science, 2007, 301(1-2): 85-92. [15]Widjojo N, Chung T-S, Weber M, et al. The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes[J]. Journal of Membrane Science, 2011, 383(1-2): 214-223. [16]谭惠芬, 李俊俊, 岳鑫业,等. 商品化聚酰胺膜的ATR-FTIR和XPS表面分析技术[J]. 膜科学与技术, 2015, 35(06): 22-27. [17]Tang A, Fang C, Feng W, et al. Engineering novel thin-film composite membranes with crater-like surface morphology using rigidly-contorted monomer for high flux nanofiltration[J]. Desalination, 2021, 509: 67-79. [18]Veríssimo S, Peinemann K V, Bordado J. New composite hollow fiber membrane for nanofiltration[J]. Desalination, 2005, 184(1-3): 1-11. [19]李锡源, 张晓东, 贾绍义,等. 中空纤维膜组件内纤维束间流体流动状况研究[J]. 化学工程, 1996, 21(02):23-29. [20]Wang Q, Zhang G-S, Li Z-S, et al. Preparation and properties of polyamide/titania composite nanofiltration membrane by interfacial polymerization[J]. Desalination, 2014, 352: 38-44. [21]王磊, 呼佳瑞, 苗瑞,等. 聚酰胺复合纳滤膜的制备与表征[J]. 膜科学与技术, 2014, 34(05): 16-21. [22]Weng R, Huang X, Liao D, et al. A novel cellulose/chitosan composite nanofiltration membrane prepared with piperazine and trimesoyl chloride by interfacial polymerization[J]. RSC Advances, 2020, 10(06): 45-61. [23]Ahmad A L, Ooi B S, Mohammad A W, et al. Composite nanofiltration polyamide membrane: a study on the diamine ratio and its performance evaluation[J]. Industrial & Engineering Chemistry Research, 2004, 43(25): 8074-8082. [24]Tansel B, Sager J, Rector T, et al. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes[J]. Separation and Purification Technology, 2006, 51(1): 40-47. [25]Nightingale Jr E. Phenomenological theory of ion solvation. effective radii of hydrated ions[J]. The Journal of Physical Chemistry, 1959, 63(9): 1381-1387. [26]Samson E, Marchand J, Snyder K A. Calculation of ionic diffusion coefficients on the basis of migration test results[J]. Materials and Structures, 2003, 36(3): 156-165. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号