基于萤石相粒子掺杂制备高稳定SrCo0.8Fe0.2O3-δ 基质透氧膜材料
作者:裴瑜洁,解品红,王雨生,夏媛玉,李芳,李其明
单位: 辽宁石油化工大学,石油化工学院,辽宁 抚顺,113001
关键词: 透氧膜;钙钛矿;掺杂;稳定性;膜分离
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2022,42(6):87-93

摘要:
 采用一锅法合成了系列Ce0.8Sm0.2O1.9(SDC)掺杂的SrCo0.8Fe0.2O3-?钙钛矿材料,系统研究了SDC掺杂对SrCo0.8Fe0.2O3-δ钙钛矿材料晶相结构和微观形貌的影响,以及SDC掺杂对SrCo0.8Fe0.2O3-δ钙钛矿材料氧渗透性能的影响。结果表明:SDC掺杂不会影响SrCo0.8Fe0.2O3-δ材料的晶相结构,二者保持了良好的化学相容性,粒径较小的SDC粒子高度分散于SrCo0.8Fe0.2O3-δ钙钛矿晶粒之间。经过SDC掺杂的SrCo0.8Fe0.2O3-δ材料膜层破碎现象得到了显著抑制,其氧渗透稳定性显著提高,其中当SDC掺杂量为10%时其透氧量可达1.71 mL/(cm2·min),该材料在775 oC 80小时透氧操作中保持了0.56 mL/(cm2·min)的高透氧量,且没有出现透氧量衰减现象,展现了良好的中低温氧渗透稳定性。
 A series of Ce0.8Sm0.2O1.9 (SDC) doped SrCo0.8Fe0.2O3-δ perovskite materials were synthesized by one-pot method.The influence of SDC doping on the stability and oxygen permeability of SrCo0.8Fe0.2O3-δ perovskite material was systematically studied. And the influence of SDC doping on oxygen permeability stability of SrCo0.8Fe0.2O3-δ perovskite materials.The results show that SDC doping cannot affect the crystal phase structure of SrCo0.8Fe0.2O3-δ perovskite material, and both SDC and SrCo0.8Fe0.2O3-δ keep excellent chemical compatibility. The smaller SDC particles are highly distributed between SrCo0.8Fe0.2O3-δ grains. Meanwhile, the fragmentation phenomenon of SrCo0.8Fe0.2O3-δ disks is inhibited and oxygen permeation stability of SrCo0.8Fe0.2O3-δ can be significantly improved by SDC doping.  When SDC doping content is about 10%, the oxygen permeation flux of the as-prepared material can reach up to about 1.71 mL/(cm2·min). Meanwhile, this material also exhibits a high oxygen permeability of about 0.56 mL/(cm2·min) during 80 hours of oxygen permeation operation at 775℃, and no any attenuation in oxygen permeation flux can be observed, showing a good oxygen permeation stability at intermediate-low temperature. 

基金项目:
国家自然科学基金项目(21703091, 21201096);辽宁省教育厅资助项目 (L2019009);辽宁科技厅计划指导项目(2019-ZD-0058)

作者简介:
裴瑜洁(1997-),女,山西长治人,硕士,主要从事新型透氧膜材料及膜催化的研究工作

参考文献:
 [1] He Y, Zhu X, Li Q, et al. Perovskite oxide absorbents for oxygenseparation[J]. AIChE J, 2009, 55(12): 3125-3133.
[2]Zhang Y, Yuan R-H, Gao JF, et al. Oxygen permeation properties of supported planar Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3-δcomposite membranes[J].Sep Purifi Technol, 2016, 166: 142-147.
[3] 王舒, 石磊, 谢沚昂, 等. CO2稳定的双相混合导体透氧膜材料的研究进展[J]. 科学通报, 2019, 64(16):1651-1670.
[4]Yang W, Li F, Li Q. Preparation of sandwich-structured Ce0.8Sm0.2O1.9-Sm0.6Sr0.4FeO3-δ ceramic membranes and its oxygen permeability[J]. Chem Eng Sci, 2019, 199: 210-219.
[5]贾宏宇, 刘宁宁, 张哲, 等. 聚乳酸分离膜的研究进展[J]. 辽宁石油化工大学学报, 2018, 38(01):10-15.
[6] Zhang G, Bao X, Zeng F, et al. Preparation and characterization of Ce0.8Sm0.2O1.9–La0.8Sr0.2Cr0.5Fe0.5O3-δ dual-phase membranes for oxygen permeation[J]. J Materiomics, 2020, 6(1): 224-231.
[7] Xue J, Weng G, Chen L, et al. Various influence of surface modification on permeability and phase stability through an oxygen permeable membrane[J]. J Membr Sci, 2019, 573: 588-594.
[8] Teraoka Y, Nobunaga T, Yamazoe N. Effect of cation substitution on the oxygen permeability of perovskite-type oxides[J]. Chem Lett, 1988, 17(3): 503-506.
[9] Teraoka Y, Zhang H, Okamoto K, et al. Mixed ionic-electronic conductivity of La1-xSrxCo1-yFeyO3-δ perovskite-type oxides[J]. Mater Res Bull, 1988, 23(1): 51-58.
[10] Pei S, Kleefisch M, Kobylinski T, et al. Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas[J]. Catal Lett, 1994, 30(1): 201-212.
[11] Shao Z, Yang W, Cong Y, et al. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane[J]. J Membr Sci, 2000, 172(1-2): 177-188.
[12] Shao Z, Xiong G, Tong J, et al. Ba effect in doped Sr(Co0.8Fe0.2)O3-δ on the phase structure and oxygen permeation properties of the dense ceramic membranes[J]. Sep Purif Technol, 2001, 25(1-3): 419-429.
[13] Efimov K, Xu Q, Feldhoff A. Transmission Electron Microscopy Study of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Perovskite Decomposition at Intermediate Temperatures[J]. Chem Mater, 2010, 22(21): 5866-5875.
[14] Wang H, Cong Y, Yang W. Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen permeable membrane [J]. J Membr Sci, 2002, 210(2): 259-271.
[15] Tan X, Wang Z, Liu H, et al. Enhancement of oxygen permeation through La0.6Sr0.4Co0.2Fe0.8O3-δ hollow fibre membranes by surface modifications[J]. J Membr Sci, 2008, 324(1-2): 128-135.
[16] Esposito V, Søgaard M, Hendriksen P V. Chemical stability of La0.6Sr0.4CoO3-δ in oxygen permeation applications under exposure to N2 and CO2[J]. Solid State Ionics, 2012, 227: 46-56.
[17] Li S, Jin W, Huang P, et al. Comparison of oxygen permeability and stability of perovskite type La0.2A0.8Co0.2Fe0.8O3-δ (A= Sr, Ba, Ca) membranes[J]. Ind Eng Chem Res, 1999, 38(8): 2963-2972.
[18] Teraoka Y, Zhang H M, Furukawa S, Yamazoe N. Oxygen permeation through perovskite-type oxide[J]. Chem Lett, 1985(9):1743-1746.
[19] Wang H, Yang W S, Cong Y, et al. Structure and oxygen permeability of a dual-phase membrane[J].J Membr Sci, 2003, 224(1-2): 107-115.
[20]杨丽. 新型锆基钙钛矿型致密透氧膜的研究[D].南京: 南京工业大学, 2003.
[21]Dou S, Masson C, Pacey P. Mechanism of oxygen permeation through lime-stabilized zirconia[J]. JElectrochem Soc, 1985, 132(8): 1843.
[22] Bouwmeester H, Kruidhof H, Burggaaf A, et al. Oxygen semipermeability of erbia-stabilized bismuth oxide[J]. Solid State Ionics, 1992, 53: 460-468.
[23] Zhu X F, Li M R,Liu H Y,et al. Design and experimental investigation of oxide ceramic dual-phase membranes[J]. J Membr Sci, 2012, 394:120-130.
[24] Zhu X, Yang W. Composite membrane based on ionic conductor and mixed conductor for oxygen permeation[J]. AIChE J, 2008, 54(3): 665-672.
[25] Xue J, Liao Q, Wei Y, et al. A CO2-tolerance oxygen permeable 60Ce0.9Gd0.1O2-δ–40Ba0.5Sr0.5Co0.8Fe0.2O3-δ dual phase membrane[J]. J Membr Sci, 2013, 443: 124-130.
[26] Li F, Xia X, Li Q, et al. The preparation and oxygen permeability of calcium-doped Ba–Sr–Ca–Co–Fe–O perovskite material[J]. Ceram Int, 2015, 41(9): 12295-12302.
[27] Liang F, Luo H, Partovi K, et al. A novel CO2-stable dual phase membrane with high oxygen permeability[J]. Chem Commun, 2014, 50(19): 2451-2454.
[28]沈乐宇, 邓红, 赵海雷. La0.05Ba0.95FeO3-δ-Gd0.2Ce0.8O2-δ双相透氧膜材料的制备及其性能研究[J]. 陶瓷学报, 2020, 41(06): 913-918.
[29]陈婷, 谢志翔, 胡晓博, 等. Ce0.8Sm0.2O2-δ-Ca3Co2O6-δ双相材料的制备及其透氧性能研究[J]. 人工晶体学报, 2017, 46(7): 1315-1321.
[30]苗强, 夏鑫, 杨微, 等. SDC-BCCF双相透氧膜材料的合成及透氧性能研究[J]. 膜科学与技术, 2018, 38(4): 75-80.
[31] Van Veen A C, Rebeilleau M, Farrusseng D, et al. Studies on the performance stability of mixed conducting BSCFO membranes in medium temperature oxygen permeation[J]. Chem Commun, 2003, (1): 32-33.
[32] Wang H, Tablet C, Caro J. Oxygen production at low temperature using dense perovskite hollow fiber membranes[J]. J Membr Sci, 2008, 322(1): 214-217.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号