扩散渗析用磺化聚醚醚酮/棒状介孔氧化硅共混膜的制备及性能研究
作者:张雅丽,陈晓鹏,苗继斌,伍斌,葛倩倩,夏茹,钱家盛
单位: 安徽大学化学化工学院,安徽省绿色高分子材料重点实验室,中国,合肥 230601
关键词: 昌扩散渗析;碱回收;磺化聚醛醛酮;介孔氧化硅
DOI号:
分类号: TQ028.8;O631
出版年,卷(期):页码: 2022,42(6):118-124

摘要:
 昌首先利用浓硫酸与聚醛醛酮(PEEK)反应得到磺化聚醛醛酮(SPEEK),然后采用改进 的 Stober法成功制备了棒状介孔氧化硅(MS),通过容液共混的方式将 MS与 SPEEK容液混 合制得一 系列 SPEEK/MS共混膜.测试了膜的基本性能与微观结构 ,并利用 NaOH/Na2WO4 体系的扩散渗析过程模拟了共混膜的分离性能.结果显示 ,在 MS添加量为 4%时 ,共混膜的 分离因子最高达到 34.7,而纯SPEEK膜的分离因子为 13.6,说明MS的引入可显著提高膜的 离子选择性 ,可以有效阻隔钨酸根离子(WO42- )的传递
 Sulfonated poly ether ether ketone (SPEEK) was obtained by sulfonating poly ether ether ketone (PEEK) with concentrated sulfuric acid, and rod-shaped mesoporous silica (MS) was successfully synthesized by modified Stöber method. A series of SPEEK/MS composite membranes were prepared by blending MS suspension and SPEEK solution directly. The basic properties and microscopic structures of as-prepared membranes were measured. The separation performance of the composite membranes were tested by the diffusion dialysis process of NaOH/Na2WO4 system. And results showed that the composite membrane possessed the optimal separation factor of 34.7 while the addition of MS was 4%, which was higher than that of pure SPEEK membrane (13.6). This confirmed that incorporation of MS could significantly improve the selectivity of the composite membranes and prevent the transport of the WO42- ions.

基金项目:
安徽省高等学校自然科学研究项目(KJ2020A0020)

作者简介:
张雅丽(1996-),女 ,安徽蚌埠人 ,硕士生 ,研究方向为有机 无机杂化膜研究

参考文献:
[1] Teng Y., Jiang Y., Zhang Y., et al. Controlled-release drug carriers based mesoporous silica spheres with hierarchical hollow/nano structure[J]. Journal of Porous Materials, 2017, 24(1):241-248.
[2] Meléndez-Ortiz H. I., Puente-Urbina B., Mercado-Silva J. A., et al. Adsorption performance of mesoporous silicas towards a cationic dye. Influence of mesostructure on adsorption capacity[J]. International Journal of Applied Ceramic Technology, 2019, 16(4):1533-1543.
[3] Shokouhimehr M., Asl M. S., Mazinani B. Modulated large-pore mesoporous silica as an efficient base catalyst for the Henry reaction[J]. Research on Chemical Intermediates, 2017, 44(3):1617-1626.
[4] Tian Q., Mu W., Shi F., et al. Simultaneous Increase of Solvent Flux and Rejection of Thin-Film Composite Membranes by Incorporation of Dopamine-Modified Mesoporous Silica[J]. ACS Omega, 2021, 6(24):16241-16250.
[5] Naik S. P., Elangovan S. P., Okubo T., et al. Morphology Control of Mesoporous Silica Particles[J]. Journal of Physical Chemistry C, 2007, 111(30): 11168-11173.
[6] Paramita, Das, Suman, et al. Serendipitous Observation of Liquid‐Phase Size Selectivity inside a Mesoporous Silica Nanoreactor in the Reaction of Chromene with Formic Acid[J]. Chemcatchem, 2018, 10(10):2260-2270.
[7] Pal N., Cho E. B., Kim D. Synthesis of ordered mesoporous silica/ceria–silica composites and their high catalytic performance for solvent-free oxidation of benzyl alcohol at room temperature[J]. RSC Advances, 2014, 4(18): 9213-9222.
[8] Teng Z., Li W., Tang Y., et al. Mesoporous organosilica hollow nanoparticles: synthesis and applications[J] Adv. Mater, 2019, 31(38):1707612.
[9] Wang H., Van Der Voort P., Qu H., et al. A simple room-temperature synthesis of mesoporous silica rods with tunable size and porosity[J]. Journal of Nanoparticle Research, 2013, 15(3) :1501.
[10] Huang X., Teng X., Chen D., et al. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function[J]. Biomaterials, 2010, 31(3): 438-48.
[11] Zhang W., Zheng N., Chen L., et al. Effect of Shape on Mesoporous Silica Nanoparticles for Oral Delivery of Indomethacin[J]. Pharmaceutics, 2018, 11(1):4.
[12] Rangasamy V. S., Thayumanasundaram S., Locquet J. P., et al. Sulfonated poly(ether ether ketone)-functionalised silica composite membranes for applications in proton exchange membrane fuel cells[J]. International Journal of Nanotechnology, 2014, 11(9/10/11): 971-992.
[13] 高启君. DMFC用改性磺化聚醚醚酮质子交换膜的研究[D]. 天津大学, 2009.
[14] 种发瑞, 王靖文, 金瑞涛, 等. 氯磺化聚乙烯/聚甲基丙烯酸扩散渗析膜的制备与性能研究[J]. 膜科学与技术, 2017, 37(05): 50-55.
[15] 李雪云, 苗继斌, 夏茹, 等. 磺化聚苯醚/介孔氧化硅杂化阳离子交换膜的制备及性能研究[J]. 膜科学与技术, 2017, 37(01): 69-74.
[16] 黄晓楠. 氢化丁腈橡胶基阳离子交换膜的制备及性能研究[D]. 安徽大学, 2021.
[17] 王从伟. 扩散渗析用聚乙烯醇/功能化介孔氧化硅共混膜的制备与性能研究[D]. 安徽大学, 2019.
[18] 李雪云. 磺化聚苯醚/介孔氧化硅杂化膜的制备及性能研究[D]. 安徽大学, 2016.
[19] Wang C., Liang Y., Miao J., et al. Preparation and properties of polyvinyl alcohol (PVA) / mesoporous silica supported phosphotungstic acid (MS-HPW) hybrid membranes for alkali recovery[J]. Journal of Membrane Science, 2019, 592: 117388.
[20] Mondal A. N., Zheng C., Cheng C., et al. Novel silica-functionalized aminoisophthalic acid-based membranes for base recovery via diffusion dialysis[J]. Journal of Membrane Science, 2016, 507: 90-98.
[21] Ashraf M. A., Islam A., Butt M. A. Novel Silica Functionalized Monosodium Glutamate/PVA Cross-Linked Membranes for Alkali Recovery by Diffusion Dialysis[J]. Journal of Polymers and the Environment, 2021,507: 90-98.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号