电中性纳滤膜的制备及其染料脱盐和 抗污染性能研究 |
作者:郭灵艺 ,谢锐 ,巨晓洁 ,汪伟 ,刘壮 ,褚良银 |
单位: 四川大学 化学工程学院 ,成都 610065 |
关键词: 两性离子液体;电中性;纳滤膜;染料脱盐;抗污染 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2022,42(6):134-143 |
摘要: |
以硫酸铜/过氧化氢(CuSO4/H2O2)为触发剂,利用多巴胺(DA)辅助磺酸基甜菜碱(SBMA)和聚乙烯亚胺(PEI)快速沉积改性聚丙烯腈(PAN)超滤膜制备了具有电中性表面的纳滤膜(PAN-DPS)。系统研究了SBMA和PEI的投料比对PAN-DPS膜的微观结构、化学组成、表面浸润性和荷电性的影响,并考察了膜的染料/盐分离及抗牛血清白蛋白(BSA)污染性能。结果表明,投料比为10:1的纳滤膜表面沉积了最多的DA和SBMA聚集体,功能层厚度高达636 nm,表面水接触角低至33.2º,等电点约为pH 7.2。其纯水渗透率为15.6 L/(m2·h·bar),对甲基蓝的截留率为99.2%,对NaCl、Na2SO4和MgCl2的截留率分别为3.4%、5.4%和8.5%。在1 mg/mL的BSA溶液中的静态吸附量为7.0 µg/cm2,过滤BSA溶液3次后的纯水恢复率仍能够达到88.5%,表现出良好的染料脱盐和抗污染性能。上述研究结果为抗污染的染料脱盐纳滤膜的制备提供了一种新思路。 |
The nanofiltration membranes with electroneutral surfaces (PAN-DPS) were prepared by dopamine(DA)-assisted fast-deposition of sulfobetaine methacrylate (SBMA) and polyethyleneimine (PEI) on polyacrylonitrile (PAN) ultrafiltration membranes using copper sulfate/hydrogen peroxide (CuSO4/H2O2) as triggers. The effects of the feeding ratio of SBMA and PEI on the microstructure, chemical composition, surface wettability and charge properties of PAN-DPS membranes were systematically investigated, and the dye/salt separation and anti-fouling performance toward bovine serum albumin (BSA) of the membranes were examined. The results showed that the membrane prepared by the feeding ratio of 10:1, whose surface coated with the maximal amount of DA and SBMA aggregates, was provided with a functional layer thickness of 636 nm, a surface water contact angle of 33.2º, and an isoelectric point of about pH 7.2. The pure water flux across the membrane was 15.6 L/(m2·h·bar), the rejection of methyl blue was 99.2%, and the rejection of NaCl, Na2SO4 and MgCl2 were 3.4%, 5.4% and 8.5%, respectively. The static adsorption amount of BSA on this membrane in 1 mg/mL BSA solution was 7.0 µg/cm2, and the flux recovery ratio reached 88.5% after filtering the BSA solution for three times. The membrane exhibited a satisfactory dye desalination and anti-fouling properties. The results provide a new idea for the study of fabrication of anti-fouling nanofiltration membrane for dye desalination. |
基金项目: |
国家自然科学基金项目(22078205);四川省杰出青年科技人才项目(2019JDJQ0026) |
作者简介: |
郭灵艺(1996-),男 ,四川自贡人 ,硕士生 ,研究方向为膜材料与膜过程 |
参考文献: |
[1]王景. 新型脱盐膜的制备及分离性能优化[D]. 郑州: 郑州大学, 2018. [2]陈丁丁. 探讨印染废水优化再用的可行性[J]. 低碳世界, 2020, 10(11): 49-50. [3]Zhu J, Tian M, Hou J, et al. Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane[J]. J Mater Chem A, 2016, 4(5): 1980-1990. [4]Lin J, Ye W, Zeng H, et al. Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes[J]. J Membr Sci, 2015, 477: 183-193. [5]侯爱芹, 赵择卿. 丝厂废水中的丝胶蛋白在超滤过程中的膜污染和膜清洗[J]. 工业水处理, 1997(04): 18-20. [6]赵雪, 何瑾馨, 展义臻. 生物酶在羊毛染整加工中的应用研究[J]. 毛纺科技, 2008(11): 9-12. [7]Ji Y, Zhao Q, An Q, et al. Novel separation membranes based on zwitterionic colloid particles: Tunable selectivity and enhanced antifouling property[J]. J Mater Chem A, 2013, 1(39): 12213. [8]Hu M, Wu Q, Chen C, et al. Facile preparation of antifouling nanofiltration membrane by grafting zwitterions for reuse of shale gas wastewater[J]. Sep Purif Technol, 2021, 276: 119310. [9]Liu C, Lee J, Ma J, et al. Antifouling Thin-Film composite membranes by controlled architecture of zwitterionic polymer brush layer[J]. Environ Sci Technol, 2017, 51(4): 2161-2169. [10]Guo Y, Weng X, Wu B, et al. Construction of nonfouling nanofiltration membrane via introducing uniformly tunable zwitterionic layer[J]. J Membr Sci, 2019, 583: 152-162. [11]Rahimi A, Mahdavi H. Zwitterionic-functionalized GO/PVDF nanocomposite membranes with improved anti-fouling properties[J]. J Water Process Eng, 2019, 32: 100960. [12]Wang C, Li Z, Chen J, et al. Influence of blending zwitterionic functionalized titanium nanotubes on flux and anti-fouling performance of polyamide nanofiltration membranes[J]. J Mater Sci, 2018, 53(14): 10499-10512. [13]Ji Y, An Q, Guo Y, et al. Bio-inspired fabrication of high perm-selectivity and anti-fouling membranes based on zwitterionic polyelectrolyte nanoparticles[J]. J Mater Chem A, 2016, 4(11): 4224-4231. [14]Shahkaramipour N, Ramanan S N, Fister D, et al. Facile grafting of zwitterions onto the membrane surface to enhance antifouling properties for wastewater reuse[J]. Ind Eng Chem Res, 2017, 56(32): 9202-9212. [15]Li G, Liu B, Bai L, et al. Improving the performance of loose nanofiltration membranes by poly-dopamine/zwitterionic polymer coating with hydroxyl radical activation[J]. Sep Purif Technol, 2020, 238: 116412. [16]韩富亮, 袁春龙, 郭安鹊, 等. 二喹啉甲酸法(BCA)分析蛋白多肽的原理、影响因素和优点[J]. 食品与发酵工业, 2014, 40(11): 202-207. [17]Wang J, Yue Z, Ince J S, et al. Preparation of nanofiltration membranes from polyacrylonitrile ultrafiltration membranes[J]. J Membr Sci, 2006, 286(1-2): 333-341. [18]Zhang C, Ma M, Chen T, et al. Dopamine-triggered one-step polymerization and codeposition of acrylate monomers for functional coatings[J]. Acs Appl Mater Inter, 2017, 9(39): 34356-34366. [19]Wang J, Zhu J, Tsehaye M T, et al. High flux electroneutral loose nanofiltration membranes based on rapid deposition of polydopamine/polyethyleneimine[J]. J Mater Chem A, 2017, 5(28): 14847-14857. [20]张超. 聚多巴胺的沉积及其功能化表面的构建[D]. 杭州: 浙江大学, 2018. [21]宋晓绪. 有机分离膜表面zeta电位测试方法及应用研究[D]. 天津: 天津工业大学, 2018. [22]张杰, 刘壮, 巨晓洁, 等. 层状Mg/Al氢氧化物/聚乙烯醇复合膜的制备及染料截留性能的研究[J]. 化工学报, 2021, 72(09): 4941-4949. [23]Tansel B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects[J]. Sep Purif Technol, 2012, 86: 119-126. [24]Volkov A G, Paula S, Deamer D W. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers[J]. Bioelectrochem Bioenerg, 1997, 42(2): 153-160. [25]Yang Y, Li Y, Li Q, et al. Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling[J]. J Membr Sci, 2010, 362(1-2): 255-264. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号