聚酰亚胺膜制备船载医用高纯氧过程研究
作者:赵 帅,赵 琦,王常春,王丽娜,刘 明,介兴明,刘健辉,许国辉,康国栋,曹义鸣
单位: 1.大连交通大学材料科学与工程学院,大连 116028;2.中国科学院大连化学物理研究所,大连 116023
关键词: 聚酰亚胺;中空纤维膜;膜分离;高纯氧;工艺优化
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2023,43(2):10-16

摘要:
分别采用商业用聚醚酰亚胺和实验室自制的聚酰亚胺为原材料制备中空纤维膜,以95%、96.5%、98%、98.5%四种氧浓度的O2/Ar混合气为原料气,在室温下系统考察了膜材料、分离系数、进气压力、原料气浓度、放空比和膜分离器长度等参数对制备高纯氧效果的影响,并设计了二级膜循环系统进行模拟对比。实验结果证明,膜的分离系数从根本上决定着富氧效果;增大进气压力会在一定范围内提升膜的富氧性能,同时还会增加混合气处理量;对于不同浓度的原料气,原料气中氧气浓度越高,膜的渗透速率越大;增大放空比有利于提高渗透侧富氧气的浓度;膜分离器长度的优化也对促进膜富氧性能有一定影响,这些结果揭示了相关参数对氧气与氩气分离过程影响的规律,并验证了采用聚酰亚胺中空纤维膜制备符合国家标准医用高纯氧的可行性。
 Hollow fiber membranes were prepared by using laboratory-made polyimide and commercial polyetherimide as raw materials. O2/Ar mixtures with four variable oxygen concentrations of 95%, 96.5%, 98% and 98.5% were used as feed gas to test the oxygen-enrichment process. The effects of parameters such as membrane separation factor, inlet pressure, feed gas concentration, vent flow ratio and membrane separator length on the separation effect of high-purity oxygen production were systematically investigated at room temperature and a two-stage membrane circulation system for simulation comparison was designed based on the test results. The experimental results show that the separation factor of the membrane fundamentally determines the oxygen-enriching effect; increasing the intake pressure will improve the oxygen-enriching performance of the membrane within a certain range, and at the same time increase the treatment capacity of the mixed gas; for the feed gas with different oxygen concentrations, higher the oxygen concentration in the feed gas is, greater the permeation rate of the membrane will be; increasing the vent flow ratio is beneficial to increase the concentration of oxygen-enriched gas on the permeate side; the optimization of the length of the membrane separator also has a certain impact on the membrane separation performance. These results reveal the influence of relevant parameters on the separation process of oxygen and argon, and verify the feasibility of using polyimide hollow fiber membranes to prepare medical high-purity oxygen that meets national medical standards.

基金项目:
中国科学院大连化学物理研究所创新研究基金项目(DICP I202010;DICP I202033);自然科学基金(21878284;22178333);中国科学院洁净能源创新研究院合作基金(DNL 180202)

作者简介:
赵 帅(1998-),男,辽宁朝阳人,硕士生,研究方向为气体膜分离,E-mail:zhaoxh@dicp.ac.cn.

参考文献:
 [1]刘维国, 赵远征, 刘辉. 舰船氧、氮气体分离技术现状与展望[J]. 中国舰船研究, 2012, 7(02): 102-107.
[2]杨顺成. 膜法空分制氮与富氧技术在舰船上的应用与前景[J]. 舰船科学技术, 2004, (03): 63-65.
[3]李宝林, 李博诚. 我国医用氧气及分子筛制氧设备监管要求和对策[J]. 中国医药导报, 2014, 11(26): 118-121.
[4]郑卫东, 于开录, 李海平, 等. 水面舰船氮氧制备技术与装备[J]. 舰船科学技术, 2013, 35(07): 134-140+153.
[5]徐徜徉, 曹义鸣, 赵勇, 等. 膜分离技术与变压吸附技术结合制取高浓度氧的研究[C]// 第二届全国传递过程学术研讨会论文集. 2003: 148-151.
[6]孔华. 膜和分子筛联合制氧方法研究[D]. 西北工业大学, 2007.
[7]Santos J C, Cruz P, Regala T, et al. High-Purity Oxygen Production by Pressure Swing Adsorption[J]. Ind.eng.chem.res, 2003, 46(2): 591-599.
[8]Tsuru T, Hwang S T. Production of high-purity oxygen by continuous membrane column combined with PSA oxygen generator[J]. Industrial & Engineering Chemistry Research, 1994, 33(2): 311-316.
[9]Baker R W. Future directions of membrane gas-separation technology[J]. Ind. Eng. Chem. Res, 2002, 41(138): 5-10.
[10]祁喜旺, 陈翠仙, 蒋维钧. 聚酰亚胺气体分离膜[J]. 膜科学与技术, 1996, (02): 2-8.
[11]刘京京, 张亚彬, 杜雄飞. 硅橡胶—玻璃中空纤维富氧膜的制备[J]. 玻璃, 2019, 46(01): 7-11.
[12]Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. 1991, 62(2): 165-185.
[13]Valappil R, Ghasem N, Al-Marzouqi M. Current and future trends in polymer membrane-based gas separation technology: A comprehensive review[J]. Industrial and Engineering Chemistry, 2021, 98: 103-129.
[14]田波. 气相色谱法在室温下分析氧和氩[J]. 低温与特气, 1997, (02): 48-50.
[15]张志军, 姚奎, 梁玉环, 等. 在线磁氧法和色谱法在测定氧化尾气时的比较[J]. 广州化工, 2014, 42(21): 138-140.
[16]张旭. 中空纤维气体分离复合膜的涂覆工艺与性能研究[D]. 北京化工大学, 2020.
[17]LM Gandía, Arzamendi G, PM Diéguez. Renewable Hydrogen Technologies. Production, Purification, Storage, Applications and Safety[M]. Elsevier Science, 2013.
[18]Freeman B D. Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes[J]. Macromolecules, 1999, 32(2): 375-380.
[19]Takeuchi H, A jump motion of small molecules in glassy polymers: A molecular dynamics simulation[J]. Chemical Physics, 1990, 93(03): 2062-2067.
[20]葛昕, 李晖, 李布青, 等. 聚酰亚胺中空纤维膜分离CH4/CO2的影响因素分析[J]. 中国沼气, 2017, 35(01): 13-16.
[21]韩鲁佳, 黄之栋, 崔引安. 中空纤维膜组件富氮特性的实验研究[J]. 北京农业工程大学学报, 1990, 10(01): 47-54.
[22]张春威, 杨博, 李鹤, 等. 聚酰亚胺中空纤维膜对油田伴生气中二氧化碳分离性能的研究[J]. 膜科学与技术, 2018, 38(04): 93-98+106.
[23]Baker R W. Membrane Technology and Applications[M]. New York: McGraw-Hill, 2000.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号