聚哌嗪酰胺原生荷正电纳滤膜的制备与性能研究
作者:王英伟,张萌萌,蒋 驰,侯影飞
单位: 1中石化石油工程设计有限公司,东营 257026 2中国石油大学(华东),青岛 66580
关键词: 荷正电纳滤膜;界面聚合;聚哌嗪酰胺
DOI号:
分类号: TQ028
出版年,卷(期):页码: 2023,43(2):41-48

摘要:
纳滤膜表面的荷电性是影响纳滤分离性能的最主要因素之一,传统聚哌嗪酰胺纳滤膜表面均带负电,因此对钙镁等二价阳离子的截留率较低。本文通过在界面聚合制膜过程中添加表面活性剂并改变有机溶剂类型,以降低单体的跨界面阻力并增强单体跨界面驱动力,从而促进哌嗪单体向有机相的扩散。利用红外光谱、XPS、SEM、AFM、Zeta电位仪等对复合膜的物化及结构特性进行了表征,结果表明分离层聚酰胺材料中含有过量的氨基,形成了原生荷正电的聚哌嗪酰胺纳滤膜。错流测试表明,该纳滤膜对不同盐溶液的截留率顺序表现为CaCl2>NaCl>Na2SO4,其中CaCl2截留率达到95.3%,通量118.4 L·m-2·h-1·MPa-1。
  The charge on the surface of nanofiltration membrane is one of the most important factors that affect the separation performance of nanofiltration membrane. The traditional polypiperazine amide nanofiltration membrane has negative charge on the surface, thus show a relatively low rejection toward divalent cations such as calcium and magnesium. In this paper, a positively charged poly (piperazine amide) nanofiltration membrane was prepared by reducing the interfacial resistance of monomer and enhancing the interfacial driving force of monomer, promoting the diffusion of piperazine monomer to the oil phase and leaving an excess of Amino groups after the interfacial polymerization. The chemical properties, surface morphology, structure and chargeability of the composite membranes were characterized by infrared spectroscopy, XPS, SEM, AFM, Zeta potential meter and other instruments, and the membrane properties were evaluated by cross-flow test. The results showed that the nanofiltration membrane showed excellent retention characteristics of positively charged membrane, and the retention sequence of different salt solutions was CaCl2>NaCl>Na2SO4, in which CaCl2 retained 95.3%, flux 118.4 L·m-2·h-1·MPa-1;.

基金项目:
国家重点研发计划项目(2019YFE0115600);中国博士后科学基金(2021M693502)

作者简介:
王英伟(1982年10月),男,山东单县,高级工程师,本科,学士,油气田地面工程及分离工程,wangyw.osec@sinopec.com

参考文献:
 [1]郭世伟,郑力玮,罗建泉,等.纳滤膜在高盐废水处理中的应用研究进展[J].膜科学与技术,2022,42(02):175-182.
[2] Ji Y L, Qian W J, Yu Y W, et al, Recent developments in nanofiltration membranes based on nanomaterials[J], Chinese Journal of Chemical Engineering, 2017,25(11):1639-1652.
[3] Tan Z, Chen S, Peng X, et al, Polyamide membranes with nanoscale Turing structures for water purification[J], Science, 2018, 360: 518-521
[4] Singh P S, Ray P, Xie Z, et al, Synchrotron SAXS to probe cross-linked network of polyamide 'reverse osmosis' and 'nanofiltration' membranes[J], Journal of Membrane Science, 2012, 421: 51-59.
[5] 环国兰,张宇峰,杜启云,等. 纳滤膜及其应用[J], 天津工业大学学报,2003, 22(01):47-50.
[6] Zhao Y L, Zhang Z G, Dai L., et al, Preparation of a highly permeable nanofiltration membrane using a novel acyl chloride monomer with -PO(Cl)(2) group[J], Desalination,2018, 431:56-65.
[7] Wang K P, Wang X M, Januszewski B, et al, Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships [J], Chemical Society Reviews, 2022, 51(2): 672-719.
[8] Wu D, Huang Y, Yu S, D. et al, Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride[J], Journal of Membrane Science, 2014,472:141-153.
[9] Xu P, Wang W, Qian X, H. et al, Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio[J], Desalination, 2019,449:57-68.
[10] Wang M, Dong W, Guo Y, et al, Positively charged nanofiltration membranes mediated by a facile polyethyleneimine-Noria interlayer deposition strategy[J], Desalination, 2021:114836.
[11] B. Jwa, B. Wy, C. Njdg, et al, Evaluation of a novel polyamide-polyethylenimine nanofiltration membrane for wastewater treatment: Removal of Cu2+ ions[J], Chemical Engineering Journal,2020,392: 123769
[12] Qi Y, Zhu L , Xin Shen,, et al, Polythyleneimine-modified original positive charged nanofiltration membrane: Removal of heavy metal ions and dyes[J], Separation & Purification Technology,2019:222:117-124.
[13] 曹阳, 任玉灵, 郭世伟, 等, 聚酰胺薄层复合膜的界面聚合制备过程调控研究进展[J], 化工进展,2020, 39(06):2125-2134.
[14] Wang H, Zhang Q, Zhang S, Positively charged nanofiltration membrane formed by interfacial polymerization of 3,3’,5,5’-biphenyl tetraacyl chloride and piperazine on a poly(acrylonitrile) (PAN) support[J], Journal of Membrane Science, 2011, 378(1-2): 243-249.
[15] Wang T, Dai L, Zhang Q, et al, Effects of acyl chloride monomer functionality on the properties of polyamide reverse osmosis (RO) membrane[J], Journal of Membrane Science, 2013,440: 48-57.
[16] Cheng X, Lai C, Li J, et al, Toward Enhancing Desalination and Heavy Metal Removal of TFC Nanofiltration Membranes: A Cost-Effective Interface Temperature-Regulated Interfacial Polymerization[J], ACS Applied Materials & Interfaces, 2021, 13(48): 57998-58010.
[17] Park SJ, Kwon SJ, Kwon HE, et al, Aromatic solvent-assisted interfacial polymerization to prepare high performance thin film composite reverse osmosis membranes based on hydrophilic supports[J], Polymer,2018,144: 159-167.
[18] Liang Y., Zhu Y, Liu C, et al, Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 angstrom precision separation[J], Nature Communications, 2020 11(1): 2015.
[19] Peng L E, Yang Z, Long L, et al, A critical review on porous substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives [J], Journal of Membrane Science, 2022, 641:119871.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号