基于2,2'-双取代BPDA基聚酰亚胺气体分离膜的性能研究 |
作者:杨萌萌,张梦茹,陈爱民 |
单位: 1.浙江工业大学,化学工程学院,杭州 3100141; 2.中国科学院宁波材料技术与工程研究所,高分子与复合材料实验室,宁波 315201 |
关键词: 2,2'-双取代联苯二酐;大体积侧基;聚酰亚胺;气体分离性能 |
DOI号: |
分类号: TQ31 |
出版年,卷(期):页码: 2023,43(2):59-67 |
摘要: |
?本文以3,3',4,4'-联苯四甲酸二酐(BPDA)为原料制备了三种具有不同大小侧基的二酐,即2,2'-二苯基-4,4',5,5'-联苯四羧酸苯酐(PBPDA)、2,2'-双(2''-三氟甲基苯基)-4,4',5,5'-联苯四羧酸二酐(O6FPBPDA)、3,3''',5,5'''-四三氟甲基-[1,1':2',1'':2'',1'''-四苯基]-4,4',5,5'-四甲酸二酐(12FPBPDA)。三种二酐与刚性扭曲的二胺,即2,6-二氨基三蝶烯(DAT)和3,9-二氨基-4,10-二甲基-6H,12H-5,11-亚甲基二苯并[b,f][1,5]二氮芳辛(TBDA2),通过一步法聚合制备了一系列自聚微孔聚酰亚胺(PIM-PI),并通过核磁、红外测试表征了聚合物结构。所得聚合物可溶于多种有机溶剂,用其制备的气体分离膜具有良好的热稳定性和机械性能,5%热失重温度为488-555 oC,玻璃化转变温度为451-465 oC,拉伸强度为60.5-97.7 MPa,拉伸模量为1.56-2.62 GPa。这些聚合物具有较高的气体渗透系数和中等的气体分离选择性,CO2的渗透系数最高可达1008 barrer,O2的渗透系数可达200.5 barrer,比表面积最高可达567 g/m2,其中O6FPBPDA-DAT的CO2/CH4分离性能接近91年Robeson上限线,老化后气体分离性能得到了进一步提升。上述结果表明在BPDA的2,2'-位引入大体积侧基可以提高聚合物的自由体积分数和气体渗透系数。 |
Here, three dianhydrides with different bulky 2,2'-substituents, namely 2,2'-diphenyl-4,4',5,5'-biphenyl-tetracarboxylic phthalic anhydride (PBPDA), 2,2'-bis(2''-trifluoromethylphenyl)-4,4',5,5'-biphenyltetracarboxylic dianhydride (O6FPBPDA), 3,3''',5,5'''-tetrafluoromethyl-[1,1':2',1'':2'',1'''-tetraphenyl]-4,4 ',5,5'-tetracarboxylic dianhydride (12FPBPDA), were prepared from 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA). A series of intrinsically microporous polyimides were prepared from three these dianhydrides and contorted diamines, namely 2,6-diaminotriptycene (DAT), 3,9-diamino-4, 10-dimethyl-6H,12H-5,11-methylenedibenzo[b,f][1,5]diaza-cine (TBDA2) by one-step polycondensation in m-cresol. The structures of these polymers were characterized by 1H NMR and FT-IR. These polymers exhibited good solubility in a variety of organic solvents. These polymers showed good thermal and mechanical properties, with T5% of 488-555 oC, Tg of 451-465 oC, tensile strength of 60.5-97.7 MPa, and modulus of 1.56-2.62 GPa. These polymers displayed high gas permeability and moderate gas selectivity, with CO2 permeability being up to 1008 Barrer, O2 permeability being up to 200.5 Barrer, and the specific surface area being up to 567 g/m2. Further, the CO2/CH4 separation performance of O6FPBPDA-DAT approached the 1991 Robeson upper bounds, and the gas separation performance had been further improved after aging. The above results indicate that the introduction of bulky substituents at the 2,2'-position of BPDA can improve the fractional free volume and gas permeability of the resulting polymers. |
基金项目: |
江省自然科学基金项目(LY19B050004) |
作者简介: |
杨萌萌(1997-),女,河南省周口市,硕士研究生,主要从事聚酰亚胺气体分离膜的研究。E-mial:yangmm@nimte.ac.cn |
参考文献: |
[1] 黎明, 郦和生, 魏昕, 王玉杰. 氢气分离膜材料的研究现状[J]. 膜科学与技术, 2022, 42(02): 183-189. [2] Shannon M A , Bonn P W , Elimelech M , et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185): 301-310. [3] Bernardo P, Drioli E, Golemme G. Membrane Gas Separation: A review/State of Art[J]. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638-4663. [4] Park C H, Lee C H, Guiver M D, et al. Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)[J]. Progress in Polymer Science, 2011, 36(11): 1443-1498. [5] Galizia M, Chi W S, Smith Z P, et al. 50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities[J]. Macromolecules, 2017, 50(20): 7809-7843. [6] 宗传欣, 丁晓斌, 南江普等. 膜法VOCs气体分离技术研究进展[J]. 膜科学与技术, 2020, 40(01): 284-293. [7] Robeson L M . The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1-2): 390-400. [8] 李悦生, 丁孟贤, 徐纪平. 聚酰亚胺气体膜分离材料的结构与性能[J]. 高分子通报, 1998,11 (3): 3-10. [9] 黄旭, 邵路, 孟令辉, 黄玉东. 聚酰亚胺基气体分离膜的改性方法及其最新进展[J]. 膜科学与技术, 2009, 29(01):101-108. [10] 刘懿韬, 蔡治礼, 单玲珑, 罗双江. 蝶烯基微孔聚合物气体分离膜的研究进展[J]. 膜科学与技术, 2022, 42(01): 145-154. [11] 李凯华, 朱芷杨, 程博闻等. 自聚微孔聚合物气体分离膜材料研究进展[J]. 膜科学与技术, 2020, 40(05): 118-128.[11] Ghanem B S, Mckeown N B, Budd P M, et al. High-performance membranes from polyimides with intrinsic microporosity[J]. Advanced Materials, 2008, 20(14): 2766-2771. [12] Ghanem B S, Alghunaimi F, Wang Y, et al. Synthesis of Highly Gas-Permeable Polyimides of Intrinsic Microporosity Derived from 1,3,6,8-Tetramethyl-2,7-diaminotriptycene[J]. ACS Omega, 2018, 3(9): 11874-11882. [13] Hyung-Sun Kim, Yun-Hi Kim, Seung-Kuk Ahn, and Soon-Ki Kwon*. Synthesis and characterization of highly soluble and oxygen permeable new polyimides bearing a noncoplanar twisted biphenyl unit containing tert-butylphenyl or trimethylsilyl phenyl Groups[J]. Macromolecules, 2003, 36, 2327-2332. [14] Qiu Z M, Chen G, Zhang Q, et al. Synthesis and gas transport property of polyimide from 2,2'-disubstituted biphenyltetracarboxylic dianhydrides(BPDA)[J]. European Polymer Journal, 2007, 43, 194-204. [15] Harris F W , Lin S H , Li F , et al. Organo-soluble polyimides: Synthesis and polymerization of 2,2'-disubstituted -4,4',5,5'-biphenyltetracarboxylic dianhydrides[J]. Polymer, 1996, 37(22): 5049-5057. [16] Wang Z, Wang D, Zhang F, et al. Tröger's Base-Based Microporous Polyimide Membranes for High-performance Gas separation[J]. ACS Macro Letters, 2014, 3(7): 597-601. [17] Sydlik S A, Chen Z, Swager T M. Triptycene Polyimides: Soluble polymers with high thermal stability and low efractive indices[J]. Macromolecules, 2011, 44(4): 976-980. [18] Park C Y, Kim E H, Kim J H, et al. Novel semi-alicyclic polyimide membranes: Synthesis, characterization, and gas separation properties[J]. Polymer, 2018, 151, 325-333. [19] 崔永丽, 张仲华, 江利等. 聚酰亚胺的性能及其应用[J]. 塑料科技, 2005,33(3), 50-54. [20] Hu x, Mu H, Miao J, et al. Synthesis and gas separation performance of intrinsically microporous polyimides derived from sterically hindered binaphthalenetetracarboxylic dianhydride[J]. Polymer Chemistry, 2020, 11(25): 4172-4179. [21] Ghanem B S , Alghunaimi F , Wang Y , et al. Synthesis of Highly Gas-Permeable Polyimides of Intrinsic Microporosity Derived from 1,3,6,8-Tetramethyl-2,7-diaminotriptycene[J]. ACS Omega, 2018, 3(9): 11874-11882. [22] Park HB, Jung CH, Lee YM, et al. Polymers with cavities tuned for fast selective transport of small molecules and ions[J]. Science, 2007, 318(5848):254-258. [23] Ahn J, Chung W J, Pinnau I, et al. Polysulfone/silica nanoparticle mixed matrix membranes for gas separation[J]. Journal of Membrane Science, 2008, 314 (1-2): 122-133. [24] Huang Z, Li Y, Wen R, et al. Enhanced gas separation properties by using nano-structured PES Zeolite 4A mixed matrix membrane[J]. Journal of Applied Polymer Science, 2010 ,101(6): 3800-3805. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号