表面接枝TAPI改善聚酰胺纳滤膜的耐氯性能
作者:嵇华忠,韩家凯,钱璟俐,刘大朋,洪耀良
单位: 1.苏州科技大学 环境科学与工程学院,苏州 215009;2.水处理技术与材料协同创新中心,苏州 215009
关键词: 界面聚合,纳滤,表面接枝改性,TAPI,耐氯
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2023,43(2):87-94

摘要:
 为了改善聚酰胺纳滤膜的耐氯性,通过表面改性将2,4,6-三氨基嘧啶(TAPI)接枝到聚酰胺膜表面,利用ATR-FTIR、SEM和接触角测定仪等手段对改性膜进行表征。结果表明,在TAPI最优质量分数为0.3%,最佳反应时间为3min时,改性膜在0.4MPa操作压力下,纯水通量为43.52L·m-2·h-1,对Na2SO4、MgSO4、NaCl和MgCl2的截留率分别为95.30%、88.04%、45.32%、34.04%。pH=3.5、7、10.5值下的氯化实验中,改性膜的通量损失量均比哌嗪基纳滤膜减少20L·m-2·h-1,并且截留率保持稳定在95%以上。
  In order to improve the chlorine resistance of polyamide nanofiltration membrane, 2,4,6-triaminopyrimidine (TAPI) was grafted onto the surface of polyamide membrane by surface modification. The modified membrane was characterized by ATR-FTIR, SEM and contact angle tester. The results showed that when the optimal mass fraction of TAPI was 0.3% and the optimal reaction time was 3 min, the pure water flux of the modified membrane was 43.52 L·m-2·h-1 at 0.4 MPa operating pressure, and the retention rates of Na2SO4, MgSO4, NaCl and MgCl2 were 95.30%, 88.04%, 45.32% and 34.04% respectively. In the chlorination experiment at pH=3.5, 7 and 10.5, the flux loss of the modified membrane was reduced by 20L·m-2·h-1compared with that of the piperazine based nanofiltration membrane, and the rejection rate remained stable above 95%.

基金项目:
国家自然科学基金“基于液态分子灌注的仿生复合多孔膜及其在膜蒸馏中的抗污染机制研究”(51908394)。

作者简介:
嵇华忠(1996- ),男,江苏丹阳人,硕士研究生,研究方向为污水处理与回用技术,E-mail:jihz2020@163.com

参考文献:
 [1] Lu X, Bian X, Shi L. Preparation and characterization of NF composite membrane[J]. Journal of Membrane Science, 2002, 210(1)3-11.(请补充卷,期号及终止页码)
[2] Hu J, Lv Z, Xu Y, et al. Fabrication of a high-flux sulfonated polyamide nanofiltration membrane: Experimental and dissipative particle dynamics studies[J]. Journal of Membrane Science, 2016, 505: 119–129.
[3] Subramanian S, Seeram R. New directions in nanofiltration applications — Are nanofibers the right materials as membranes in desalination?[J]. Desalination, 2013, 308: 198–208.
[4] Liu S, Wu C, Hou X, et al. Understanding the chlorination mechanism and the chlorine-induced separation performance evolution of polypiperazine-amide nanofiltration membrane[J]. Journal of Membrane Science, 2019, 573: 36–45.
[5] 李峰辉, 孟建强, 马六甲. 耐氯纳滤/反渗透复合膜的研究进展[J]. 高分子通报, 2014,186(10): 42–51.
[6] Wei X, Wang Z, Chen J, et al. A novel method of surface modification on thin-film-composite reverse osmosis membrane by grafting hydantoin derivative[J]. Journal of Membrane Science, 2010, 346(1): 152–162.
[7] Fan X, Dong Y, Su Y, et al. Improved performance of composite nanofiltration membranes by adding calcium chloride in aqueous phase during interfacial polymerization process[J]. Journal of Membrane Science, 2014, 452: 90–96.
[8] Zhu X, Cheng X, Xing J, et al. In-situ covalently bonded supramolecular-based protective layer for improving chlorine resistance of thin-film composite nanofiltration membranes[J]. Desalination, 2020, 474: 114197.
[9] Sun J, Zhu L-P, Wang Z-H, et al. Improved chlorine resistance of polyamide thin-film composite membranes with a terpolymer coating[J]. Separation and Purification Technology, 2016, 157: 112–119.
[10] Zhu J, Yuan S, Uliana A, et al. High-flux thin film composite membranes for nanofiltration mediated by a rapid co-deposition of polydopamine/piperazine[J]. Journal of Membrane Science, 2018, 554: 97–108.
[11] Wei X-Z, Gan Z-Q, Shen Y-J, et al. Negatively-charged nanofiltration membrane and its hexavalent chromium removal performance[J]. Journal of Colloid and Interface Science, 2019, 553: 475–483.
[12] Lu X, Romero-Vargas Castrillón S, Shaffer D L, et al. In Situ Surface Chemical Modification of Thin-Film Composite Forward Osmosis Membranes for Enhanced Organic Fouling Resistance[J]. Environmental Science & Technology, 2013, 47(21): 12219–12228.
[13] Shi H, Xue L, Gao A, et al. Fouling-resistant and adhesion-resistant surface modification of dual layer PVDF hollow fiber membrane by dopamine and quaternary polyethyleneimine[J]. Journal of Membrane Science, 2016, 498: 39–47.
[14] Wang C, Li Z, Chen J, et al. Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination[J]. Journal of Membrane Science, 2017, 523: 273–281.
[15] Hu D, Xu Z-L, Wei Y-M, et al. Poly(styrene sulfonic acid) sodium modified nanofiltration membranes with improved permeability for the softening of highly concentrated seawater[J]. Desalination, 2014, 336: 179–186.
[16] Wu D, Martin J, Du J R,et al. Effects of chlorine exposure on nanofiltration performance of polyamide membranes[J]. Journal of Membrane Science, 2015, 487: 256–270.
[17] Kang G-D, Gao C-J, Chen W-D, et al. Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane[J]. Journal of Membrane Science, 2007, 300(1–2): 165–171.
[18] Kwon Y, Leckie J. Hypochlorite degradation of crosslinked polyamide membranesII. Changes in hydrogen bonding behavior and performance[J]. Journal of Membrane Science, 2006, 282(1–2): 456–464.
[19] Han R, Xie Y, Ma X, et al. Preparation of poly(2,4,6‐triaminopyrimidine‐TMC)/P84 composite nanofiltration membrane with enhanced chlorine resistance and solvent resistance[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(9): 2838–2843.
[20] Feng X, Liu D, Ye H, et al. High-flux polyamide membrane with improved chlorine resistance for efficient dye/salt separation based on a new N-rich amine monomer[J]. Separation and Purification Technology, 2021, 278: 119533.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号