导电膜的分类、制备及应用 |
作者:章 海,徐莉莉,穆 荣,王少坡,张贵英,张文娟 |
单位: 1天津城建大学 环境与市政工程学院水质科学与技术天津市重点实验室,天津300384;2中国科学院 生态环境研究中心,环境模拟与污染控制国家重点联合实验室,环境水质学国家重点实验室,北京100085 |
关键词: 导电膜;膜改性;抗污染;选择透过性 |
DOI号: |
分类号: TB332 |
出版年,卷(期):页码: 2023,43(2):164-172 |
摘要: |
导电膜作为一种新型的功能膜,在电辅助作用下产生电化学氧化还原、库伦排斥等作用,有效提高对离子的截留和抗污染性能,近年来已成为膜科学领域研究的新热点,在水处理领域具有广泛的应用前景。目前导电膜研究目的是提高其分离、抗污染和选择透过性方面的性能。本文重点综述了近年来导电膜领域的研究进展,系统地对导电膜进行了分类,并总结了导电膜的制备方法及其在抗膜污染、渗透性-选择性权衡、热驱动膜的热管理和能耗方面的应用,最后提出了目前导电膜发展存在的一些问题,为导电膜的发展和应用提供一定的指导。 |
Conductive membrane is a new type of functional membrane, which could effectively improve membrane’s ionic retention and anti-pollution properties through interactions of electrochemical redox and Coulomb repulsion assisted by electric field, has become a new hot spot for the researches in the field of membrane science in recent years and has a wide application prospects in water treatment. Current research on conductive membranes is aimed at improving their performance in terms of separation, anti-pollution and selective permeability. In this paper, the research progress in the field of conductive membranes in recent years was reviewed, the conductive membranes were systematically classified, the preparation methods of conductive membranes and their applications in anti-membrane contamination, permeability-selectivity trade-off, thermal management and energy consumption of thermally driven membranes were summarized and finally current problems for the development of conductive membranes were pointed out. Our work could provide some guidance for the development and application of conductive membranes. |
基金项目: |
天津市教委科研计划项目2018KJ161 |
作者简介: |
章海(1997-),男,安徽铜陵人,硕士,研究方向为基于碳纳米材料导电纳滤膜的制备与研究. E-mail:550160269@qq.com. |
参考文献: |
[1] 韩虎子, 杨红. 膜分离技术现状及其在食品行业的应用[J]. 食品与发酵科技, 2012, 48(05): 23-26. [2] 王华, 刘艳飞, 彭东明, 王福东, 鲁曼霞. 膜分离技术的研究进展及应用展望[J]. 应用化工, 2013, 42(03): 532-534. [3] Mizuguchi H, Sakurai J, Kinoshita Y, Iiyama M, Kijima T, Tachibana K, Nishina T, Shida J. Flow-based Biosensing System for Glucose Fabricated by Using Track-etched Microporous Membrane Electrodes[J]. Chemistry Letters, 2013, 42(10): 1317-1319. [4] Ismail A, Goh P, Sanip S, Aziz M. Transport and separation properties of carbon nanotube-mixed matrix membrane[J]. Separation and Purification Technology, 2009, 70(1): 12-26. [5] Elimelech M, Phillip W A. The future of seawater desalination: energy, technology, and the environment[J]. science, 2011, 333(6043): 712-717. [6] Pendergast M M, Hoek E M. A review of water treatment membrane nanotechnologies[J]. Energy & Environmental Science, 2011, 4(6): 1946-1971. [7] Darbari Z M, Mungray A A. Synthesis of an electrically cleanable forward osmosis membrane[J]. Desalination and Water Treatment, 2016, 57(4): 1634-1646. [8] Fritzmann C, Löwenberg J, Wintgens T, Melin T. State-of-the-art of reverse osmosis desalination[J]. Desalination, 2007, 216(1-3): 1-76. [9] Bellona C, Drewes J E, Xu P, Amy G. Factors affecting the rejection of organic solutes during NF/RO treatment—a literature review[J]. Water research, 2004, 38(12): 2795-2809. [10] Zsigmondy R, Bachmann W, De Haën E. Membranfilter[J]. Zeitschrift für analytische Chemie, 1919, 58(3): 116-117. [11] Sutherland A J, Ruiz-Caldas M-X, De Lannoy C-F. Electro-catalytic microfiltration membranes electrochemically degrade azo dyes in solution[J]. Journal of Membrane Science, 2020, 611. [12] Zhang N, Halali M A, De Lannoy C-F. Detection of fouling on electrically conductive membranes by electrical impedance spectroscopy[J]. Separation and Purification Technology, 2020, 242: 116823. [13] Fan X, Zhao H, Quan X, Liu Y, Chen S. Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation[J]. Water Research, 2016, 88: 285-292. [14] Tang L, Iddya A, Zhu X, Dudchenko A V, Duan W, Turchi C, Vanneste J, Cath T Y, Jassby D. Enhanced Flux and Electrochemical Cleaning of Silicate Scaling on Carbon Nanotube-Coated Membrane Distillation Membranes Treating Geothermal Brines[J]. ACS Appl Mater Interfaces, 2017, 9(44): 38594-38605. [15] Huang Q, Liu H, Wang Y, Xiao C. A hybrid electric field assisted vacuum membrane distillation method to mitigate membrane fouling[J]. RSC advances, 2018, 8(32): 18084-18092. [16] Liu L, Xu Y, Wang K, Li K, Xu L, Wang J, Wang J. Fabrication of a novel conductive ultrafiltration membrane and its application for electrochemical removal of hexavalent chromium[J]. Journal of Membrane Science, 2019, 584: 191-201. [17] Zhang H, Quan X, Fan X, Yi G, Chen S, Yu H, Chen Y. Improving ion rejection of conductive nanofiltration membrane through electrically enhanced surface charge density[J]. Environmental science & technology, 2018, 53(2): 868-877. [18] Jung B, Kim C Y, Jiao S, Rao U, Dudchenko A V, Tester J, Jassby D. Enhancing boron rejection on electrically conducting reverse osmosis membranes through local electrochemical pH modification[J]. Desalination, 2020, 476: 114212. [19] Shakeri A, Salehi H, Rastgar M. Antifouling electrically conductive membrane for forward osmosis prepared by polyaniline/graphene nanocomposite[J]. Journal of Water Process Engineering, 2019, 32. [20] Lee J, Ha J-H, Song I-H. Improving the antifouling properties of ceramic membranes via chemical grafting of organosilanes[J]. Separation Science and Technology, 2016, 51(14): 2420-2428. [21] Salehi E, Madaeni S. Influence of conductive surface on adsorption behavior of ultrafiltration membrane[J]. Applied surface science, 2010, 256(10): 3010-3017. [22] Shi X, Tal G, Hankins N P, Gitis V. Fouling and cleaning of ultrafiltration membranes: A review[J]. Journal of Water Process Engineering, 2014, 1: 121-138. [23] Liang C-L, Mai Z-H, Xie Q, Bao R-Y, Yang W, Xie B-H, Yang M-B. Induced formation of dominating polar phases of poly (vinylidene fluoride): positive ion–CF2 dipole or negative ion–CH2 dipole interaction[J]. The Journal of Physical Chemistry B, 2014, 118(30): 9104-9111. [24] Lin Y, Kumakiri I, Nair B, Alsyouri H. Microporous inorganic membranes[J]. Separation and Purification Methods, 2002, 31(2): 229-379. [25] 万灵书, 黄小军, 徐志康. 聚丙烯腈分离膜改性研究进展及其应用[J]. 功能高分子学报, 2004, 17(3): 527-534. [26] Song H, Shao J, He Y, Hou J, Chao W. Natural organic matter removal and flux decline with charged ultrafiltration and nanofiltration membranes[J]. Journal of membrane science, 2011, 376(1-2): 179-187. [27] Bu Q, Zhan Y, He F, Lavorgna M, Xia H. Stretchable conductive films based on carbon nanomaterials prepared by spray coating[J]. Journal of Applied Polymer Science, 2016, 133(15): n/a-n/a. [28] Liu L, Liu J, Gao B, Yang F, Chellam S. Fouling reductions in a membrane bioreactor using an intermittent electric field and cathodic membrane modified by vapor phase polymerized pyrrole[J]. Journal of membrane science, 2012, 394: 202-208. [29] Liu L, Liu J, Bo G, Yang F, Crittenden J, Chen Y. Conductive and hydrophilic polypyrrole modified membrane cathodes and fouling reduction in MBR[J]. Journal of membrane science, 2013, 429: 252-258. [30] Xing C, Zhao M, Zhao L, You J, Cao X, Li Y. Ionic liquid modified poly (vinylidene fluoride): crystalline structures, miscibility, and physical properties[J]. Polymer Chemistry, 2013, 4(24): 5726-5734. [31] Dudchenko A V, Rolf J, Russell K, Duan W, Jassby D. Organic fouling inhibition on electrically conducting carbon nanotube–polyvinyl alcohol composite ultrafiltration membranes[J]. Journal of Membrane Science, 2014, 468: 1-10. [32] Huang J, Wang Z, Zhang J, Zhang X, Ma J, Wu Z. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors[J]. Scientific reports, 2015, 5(1): 1-8. [33] Geng P, Chen G. Magnéli Ti4O7 modified ceramic membrane for electrically-assisted filtration with antifouling property[J]. Journal of Membrane Science, 2016, 498: 302-314. [34] Zhou Y, Maharubin S, Tran P, Reid T, Tan G Z. Anti-biofilm AgNP-polyaniline-polysulfone composite membrane activated by low intensity direct/alternating current[J]. Environmental Science: Water Research & Technology, 2018, 4(10): 1511-1521. [35] Zhang Q, Vecitis C D. Conductive CNT-PVDF membrane for capacitive organic fouling reduction[J]. Journal of Membrane Science, 2014, 459: 143-156. [36]Li X, Liu L, Liu T, Zhang D, An C, Yang F. An active electro-Fenton PVDF/SS/PPy cathode membrane can remove contaminant by filtration and mitigate fouling by pairing with sacrificial iron anode[J]. Journal of Membrane Science, 2020, 605: 118100. [37] Huang J, Wang Z, Zhang J, Zhang X, Ma J, Wu Z. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors[J]. Sci Rep, 2015, 5: 9268. [38] Ahmed F E, Hashaikeh R, Hilal N. Fouling control in reverse osmosis membranes through modification with conductive carbon nanostructures[J]. Desalination, 2019, 470: 114118. [39] Huang Q, Liu H, Wang Y, Xiao C. A hybrid electric field assisted vacuum membrane distillation method to mitigate membrane fouling[J]. RSC advances, 2018, 8(32): 18084-18092. [40] Liu H, Huang Q, Wang Y, Xiao C. PTFE conductive membrane for EVMD process and the application of electro-catalysis[J]. Separation and Purification Technology, 2017, 187: 327-333. [41] Zhang Q, Arribas P, Remillard E M, Garcia-Payo M C, Khayet M, Vecitis C D. Interlaced CNT Electrodes for Bacterial Fouling Reduction of Microfiltration Membranes[J]. Environ Sci Technol, 2017, 51(16): 9176-9183. [42] Liu L, Zhao F, Liu J, Yang F. Preparation of highly conductive cathodic membrane with graphene (oxide)/PPy and the membrane antifouling property in filtrating yeast suspensions in EMBR[J]. Journal of membrane science, 2013, 437: 99-107. [43] Li Y, Liu L, Yang F, Ren N. Performance of carbon fiber cathode membrane with C–Mn–Fe–O catalyst in MBR–MFC for wastewater treatment[J]. Journal of Membrane Science, 2015, 484: 27-34. [44] Zhao F, Liu L, Yang F, Ren N. E-Fenton degradation of MB during filtration with Gr/PPy modified membrane cathode[J]. Chemical engineering journal, 2013, 230: 491-498. [45] De Lannoy C-F, Jassby D, Gloe K, Gordon A D, Wiesner M R. Aquatic biofouling prevention by electrically charged nanocomposite polymer thin film membranes[J]. Environmental science & technology, 2013, 47(6): 2760-2768. [46] Galanakis C M, Fountoulis G, Gekas V. Nanofiltration of brackish groundwater by using a polypiperazine membrane[J]. Desalination, 2012, 286: 277-284. [47] Zhang H, Quan X, Chen S, Fan X, Wei G, Yu H. Combined effects of surface charge and pore size on co-enhanced permeability and ion selectivity through RGO-OCNT nanofiltration membranes[J]. Environmental science & technology, 2018, 52(8): 4827-4834. [48] Xue S-M, Xu Z-L, Tang Y-J, Ji C-H. Polypiperazine-amide nanofiltration membrane modified by different functionalized multiwalled carbon nanotubes (MWCNTs)[J]. ACS applied materials & interfaces, 2016, 8(29): 19135-19144. [49] Peng J, Su Y, Chen W, Zhao X, Jiang Z, Dong Y, Zhang Y, Liu J, Xingzhong C. Polyamide nanofiltration membrane with high separation performance prepared by EDC/NHS mediated interfacial polymerization[J]. Journal of membrane science, 2013, 427: 92-100. [50] Zhang H, Quan X, Fan X, Yi G, Chen S, Yu H, Chen Y. Improving Ion Rejection of Conductive Nanofiltration Membrane through Electrically Enhanced Surface Charge Density[J]. Environ Sci Technol, 2019, 53(2): 868-877. [51] Safar M, Jafar M, Abdel-Jawad M, Bou-Hamad S. Standardization of RO membrane performance[J]. Desalination, 1998, 118(1-3): 13-21. [52] Bellona C, Drewes J E, Xu P, Amy G. Factors affecting the rejection of organic solutes during NF/RO treatment--a literature review[J]. Water Res, 2004, 38(12): 2795-809. [53] Jung B, Kim C Y, Jiao S, Rao U, Dudchenko A V, Tester J, Jassby D. Enhancing boron rejection on electrically conducting reverse osmosis membranes through local electrochemical pH modification[J]. Desalination, 2020, 476. [54] Dudchenko A V, Chen C, Cardenas A, Rolf J, Jassby D. Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes[J]. Nat Nanotechnol, 2017, 12(6): 557-563. [55] Li K, Zhang Y, Wang Z, Liu L, Liu H, Wang J. Electrothermally Driven Membrane Distillation for Low-Energy Consumption and Wetting Mitigation[J]. Environ Sci Technol, 2019, 53(22): 13506-13513. [56] Song L, Huang Q, Huang Y, Bi R, Xiao C. An electro-thermal braid-reinforced PVDF hollow fiber membrane for vacuum membrane distillation[J]. Journal of Membrane Science, 2019, 591: 117359. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号