烧结ZIF-300/PSU6010混合基质膜用于高效CO2分离 |
作者:魏以旺,孙玉绣,郭翔宇,乔志华 |
单位: 天津工业大学 省部共建分离膜与膜过程国家重点实验室,化学工程与技术学院,天津 300387 |
关键词: ZIF-300;烧结;混合基质膜;CO2/CH4分离 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2023,43(3):30-36 |
摘要: |
以硝酸锌六水合物为金属源,5-溴苯并咪唑和2-甲基咪唑为配体,合成了类沸石咪唑骨架材料ZIF-300。然后将不同温度下烧结的SZIF-300颗粒作为填料加入到聚醚砜(PSU)中,制备了SZIF-300/PSU6010混合基质膜。研究了不同的烧结温度和负载量对所制备的SZIF-300/PSU6010混合基质膜气体分离性能的影响。在烧结温度为450 ℃的条件下合成了无定型SZIF-300-3,将其作为填料掺杂在聚醚砜中,制备出了SZIF-300/PSU6010-3混合基质膜。结果表明,在进气压力为0.2 MPa、测试温度为25 ℃、烧结温度为450 ℃且负载量为30 %(质量分数)条件下,SZIF-300/PSU6010-3混合基质膜的CO2通量与纯膜相比基本保持不变,为10 Barrer;CO2/CH4选择性为60.22,是PSU纯膜选择性(α(CO2/CH4)=17.15)的3.4倍。 |
Zeolititic imidazolate frameworks material-300 (ZIF-300) was synthesized with zinc nitrate hexahydrate as metal source, 5-bromobenzimidazole and 2-methylimidazole as ligands. Then SZIF-300 particles sintered at different temperatures were added to polyethersulfone (PSU) as filler to preparing SZIF-300/PSU6010 mixed matrix membranes. In this paper, the effect of different sintering temperature and loading on the gas separation performance of prepared SZIF-300/PSU6010 mixed matrix membrane was studied. At the sintering temperature of 450 ℃, amorphous SZIF-300-3 was synthesized and doped in PSU as filler to prepare the mixed matrix membrane of SZIF-300-3/PSU6010. The results showed under the conditions of 0.2 MPa inlet pressure, 25 ℃ test temperature, 450 ℃ sintering temperature and 30 wt% loading, the CO2 permeability of SZIF-300-3/PSU6010 mixed matrix membrane basically unchanged at 10 barrer. Furthermore, CO2/CH4 selectivity was 60.22, which was 3.4 times of pure PSU membrane selectivity (α(CO2/CH4)=17.15). |
基金项目: |
国家自然科学基金项目(1908163) |
作者简介: |
魏以旺(1996-),男,天津东丽人,硕士研究生,主要研究方向为气体分离膜的制备,Email:2572450953@qq.com |
参考文献: |
[1] Zhang Y M, Wang H X, Liu J D, et al. Enzyme-embedded metal-organic framework membranes on polymeric substrates for efficient CO2 capture[J]. J Mater Chem A, 2017, 5(37): 19954-19962. [2] Zou C C, Li Q Q, Hua Y Y, et al. Mechanical synthesis of COF nanosheet cluster and its mixed matrix membrane for efficient CO2 removal[J]. ACS Appl Mater Interfaces, 2017, 9(34): 29093-29100. [3] 王树清, 乔志华, 王志. 分离CO2固定载体膜工业化制备技术[J]. 膜科学与技术, 2016, 36(5): 87-94. [4] 王树清, 乔志华, 王志. 以3-甲氧基苄胺改性聚乙烯基胺制备CO2分离膜[J]. 膜科学与技术2016, 36(3): 1-7. [5] 曹晓畅, 王志, 乔志华,等. 一步法制备含氨基化合物的非对称CO2分离膜[J]. 化工学报, 2018, 69(11):4778-4787. [6] 何玉鹏, 王志, 乔志华,等. 含有MCM-41分子筛的混合基质复合膜用于CO2分离[J]. 化工学报, 2015, 66(10):3979-3990. [7] Park H B, Han S H, Jung C H, et al. Thermally rearranged (TR) polymer membranes for CO2 separation[J]. J Membr Sci, 2010, 359(1/2): 11-24. [8] George G, Bhoria N, Alhallaq S, et al. Polymer membranes for acid gas removal from natural gas[J]. Sep Purif Technol, 2016, 158: 333-356. [9] Alqaheem Y, Alomair A, Vinoba M, et al. Polymeric gas-separation membranes for petroleum refining[J]. Int J Polym Sci, 2017, 2017: 1-19. [10] Dalane K, Dai Z, Mogseth G, et al. Potential applications of membrane separation for subsea natural gas processing: A review[J]. J Nat Gas Sci Eng, 2017, 39: 101-117. [11] Yu C, Liang Y, Xue W, et al. Polymer-supported ultra-thin ZIF-67 membrane through in situ interface self-repair[J]. J Membr Sci, 2021, 625: 119139. [12] Yu C, Jia Y, Fang K, et al. Preparation hierarchical porous MOF membranes with island-like structure for efficient gas separation[J]. J Membr Sci, 2022,663: 121036. [13] Jian W, Wei S, Zhu H, et al. Fabrication of ZIF-300 Membrane and its Application for Efficient Removal of Heavy Metal Ions from Wastewater[J]. Journal of Membrane Science, 2018,10: 80-99. [14] Nhung T, Nguyen, Hiroyasu F, et al. Selective Capture of Carbon Dioxide under Humid Conditions by Hydrophobic Chabazite-Type Zeolitic Imidazolate Frameworks[J]. Angewandte, 2014,53:10645–10648. [15] Yuan J, Zhu H, Sun J, et al. Novel ZIF-300 Mixed-Matrix Membranes for Efficient CO2 capture[J]. ACS Appl Mater Interfaces, 2017,9(44): 38575-38583. [16] Sarfraz M, Ba-Shammakh M. Water-stable ZIF-300/Ultrason(R) mixed-matrix membranes for selective CO2 capture from humid post combustion flue gas[J]. Chinese Journal of Chemical Engineering 2017, 9541(17):30954-30975. [17] Sarfraz M, Ba-Shammakh M. Pursuit of efficient CO2-capture membranes: Graphene oxide- and MOF-integrated ultrason membranes[J]. Polymer Bulletin, 2018, 18: 2301-2321. [18] Sarfraz M, Arshad A, Ba-Shammakh M. Predicting gas permeability through mixed-matrix membranes filled with nanofillers of different shapes[J]. Arabian Journal for Science and Engineering, 2021, 21:5996-6008. [19] Fonseca J, Gong T, Jiao L, et al. Metal–organic frameworks (MOFs) beyond crystallinity: Amorphous MOFs, MOF liquids and MOF glasses[J]. Journal of Materials Chemistry A, 2021, 9:10562-10611. [20] Hou J, Ashling C W, Collins S M, et al. Metal-organic framework crystal-glass composites[J]. Nature Communications, 2018,19: 10470-10479. [21] Tao H, Bennett T D, Yue Y. Melt-quenched hybrid glasses from metal-organic frameworks[J]. Advanced Materials, 2017,29(20): 1601705-1601710. [22] Bennett T D, Yue Y,Li P, et al. Melt-quenched glasses of metal-organic frameworks[J]. Journal of the American Chemical Society, 2017, 16: 1705-1710. [23] Gaillac R , Pullumbi P , Beyer K A, et al. Liquid metal–organic frameworks[J]. Nature Materials,2017,16(11):1149-1154. [24] Hou J, Rios L, Krajnc A, et al. Halogenated metal-organic framework glasses and liquids[J]. Journal of the American Chemical Society, 2020, 142: 3880-3890. [25] Qiao A, Bennett T D, Tao H. A metal-organic framework with ultrahigh glass-forming ability[J]. Science Advances, 2018, 4: 6827-6833. [26] Tao L, Li D, Wang S. Straightforward installation of carbon–halogen, carbon–oxygen and carbon–carbon bonds within metal–organic frameworks (MOF) via palladium-catalysed direct C–H functionalization[J]. Chem Commun, 2014, 50(87): 13261–13264. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号