用于膜生物反应器的仿生抗污染抑菌聚偏氟乙烯膜制备及其性能 |
作者:吴秀丽,田一梅 |
单位: 天津大学 环境科学与工程学院,天津 300072 |
关键词: 共沉积;仿生修饰;聚偏氟乙烯膜;抗污染改性;抑菌性 |
DOI号: |
分类号: TQ028 |
出版年,卷(期):页码: 2023,43(3):81-86 |
摘要: |
利用聚多巴胺一步原位共沉积法,将聚乙二醇(PEG)和铜元素(Cu)仿生固定于聚偏氟乙烯膜(PVDF)表面,制备仿生抗污染PVDF膜。利用X射线光电子能谱和扫描电子显微镜,研究了膜表面固定PEG和Cu后PVDF膜表面结构、元素组成等的特征变化;同时利用接触角、动态渗透分离性能、抑菌性能等分析了表面仿生改性对PVDF膜表面抗污染性和抑菌性能的影响。结果表明,经过膜表面聚多巴胺与改性剂的一步原位仿生修饰,改性膜表面亲水性增强,可有效抑制有机蛋白质在膜表面的吸附污染和细菌在膜表面的黏附(BSA截留率95.2%;大肠杆菌抑制率100%;金黄色葡萄球菌抑制率100%);同时增强了改性膜渗透分离性能。在水处理领域尤其是膜生物反应器方面展示出潜在的应用前景。 |
The bionic anti-fouling PVDF membrane was prepared by using polydopamine one-step in situ co-deposition method. Polyethylene glycol (PEG) and copper (Cu) were immobilized on the surface of polyvinylidene fluoride (PVDF) membrane. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to study the surface structure and elemental composition of PVDF films with PEG and Cu fixed on them. Meanwhile, the effect of PEG and Cu on anti-fouling performance of PVDF membrane was analyzed by water contact angle, dynamic osmotic separation performance and antibacterial property. The results showed that, through one-step in-situ biomimetic modification of polydopamine and modifiers on the surface of the modified membrane, the surface hydrophilicity of the modified membrane was enhanced. The adsorption of organic proteins on the membrane surface and the adhesion of bacteria on the membrane surface were effectively inhibited (BSA interception rate was 95.2%; Escherichia coli inhibition rate 100%; Staphylococcus aureus inhibition rate was 100%.). And the permeability separation performance of the modified membrane was enhanced, showing a potential application prospect in the field of water treatment, especially in membrane bioreactor. |
基金项目: |
作者简介: |
吴秀丽(1979-)女 籍贯山东潍坊,硕士研究生学历,主要研究方向:膜材料与应用 |
参考文献: |
[1]Tang K, Xie J, Pan Y, et al. The optimization and regulation of energy consumption for MBR process: A critical review[J]. Journal of Environmental Chemical Engineering, 2022, 5: 108406. [2]Bhattacharyya A, Liu L, Lee K, et al. Review of biological processes in a membrane bioreactor (mbr): effects of wastewater characteristics and operational parameters on biodegradation efficiency when treating industrial oily wastewater[J]. Journal of Marine Science and Engineering, 2022, 10: 1229. [3]Zhang J, Pan X, Xue Q, et al. Antifouling hydrolyzed polyacrylonitrile/graphene oxide membrane with spindle-knotted structure for highly effective separation of oil-water emulsion[J]. Journal of Membrane Science, 2017, 532: 38-46. [4]赵秋燕,胡丽丽,王妍. 旋转膜组件对MBR内污泥特性及膜污染的影响[J].徐州工程学院学报, 2022, 37: 56-61. [5]Zhi X, Li P, Gan X, et al. Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of lysine[J]. Journal of Biomaterials Science Polymer Edition, 2014, 25: 1619-1628. [6]Lee C, Wu C, Tyan Y, et al. Identification of pyruvate kinase as a novel allergen in whiteleg shrimp (litopenaeus vannamei) by specific-IgE present in patients with shrimp allergy[J]. Food Chemistry, 2018, 258: 359-365. [7]Li Q, Bi Q Y, Lin H H, et al. A novel ultrafiltration (UF) membrane with controllable selectivity for protein separation[J]. Journal of Membrane Science, 2013, 427: 155-167. [8]Wang S, Li T, Chen C, et al. PVDF ultrafiltration membranes of controlled performance via blending PVDF-g-PEGMA copolymer synthesized under different reaction times [J]. Frontiers of Environmental Science & Engineering, 2017, 12: 3(1-12). [9]An Z H, Dai F Y, Wei C J, et al. Polydopamine/cysteine surface modified hemocompatible poly(vinylidene fluoride) hollow fiber membranes for hemodialysis[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2018, 106B: 2869-2877. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号