共聚聚酰亚胺热重排改性薄膜制备及气体分离性能 |
作者:邹永兰,贾宏葛,徐 蕊,赵士君,周俊康 |
单位: 齐齐哈尔大学 1.化学与化学工程学院,2.材料科学与工程学院,齐齐哈尔 161000 |
关键词: 硅烷化;共聚;聚酰亚胺;热重排;气体分离膜 |
DOI号: |
分类号: TQ11-2357 |
出版年,卷(期):页码: 2023,43(3):87-93 |
摘要: |
采用二胺2,2-二(3-氨基-4-羟基苯基)六氟丙烷(APAF)经硅烷化后与4,4-二氨基二苯醚以7:3,5:5,3:7三个摩尔比和二酐4,4’-(六氟异丙烯)二酞酸酐进行共聚,通过化学亚胺化后得到溶解性好、相对分子质量高、成膜性好的3组共聚聚酰亚胺膜;经过350 ℃~400 ℃热处理后,得到不同的热重排改性膜,采用FT-IR光谱等手段进行表征。结果表明,所合成的硅烷化聚酰亚胺随着共聚的APAF含量的增加对CO2/CH4的选择性得到提升;而随着热处理温度的升高,其CO2的渗透系数增加,CO2/CH4的气体选择性提高。噁唑环的转化使得聚合物分子链刚性增强,从而达到改善膜的气体分离性能。400℃热处理下得到的热重排(7:3)膜CO2的渗透系数相较于前驱体膜,从32.82 Barrer提升到275.62 Barrer,提高了8.4倍,热重排后的膜对CO2/CH4的气体分离性能超过2008年Robeson上限。 |
Diamine 2, 2-bis (3-amino-4-hydroxy-phenyl) hexafluoropropane (APAF) was silanized and then copolymerized with 4, 4-diaminodiphenyl ether in three molar ratios of 7:3, 5:5, 3:7 and anhydride 4,4 '-(hexafluoroisopropene) diphthalic acid. After chemical imiination, high molecular weight copolyimide membranes with good solubility was obtained. After heat treatment at 350 ℃-400 ℃, different degrees of thermally rearranged modified membranes were obtained. FT-IR spectra proved that copolyimide and thermally rearranged modified membranes were successfully prepared. The results showed that the selectivity of CO2/CH4 increased with the increase of APAF content of silanized polyimide. As the temperature of thermal rearrangement increases, the permeability coefficient of CO2 increases, and the gas selectivity of CO2/CH4 increases. It can be seen that the transformation of oxazole ring enhances the rigidity of the molecular chain and thus improves the gas separation performance of the membrane. The permeability coefficient of CO2 in the 400℃ thermal rearrangement (7:3) membrane increased by 8.4 times from 32.82 Barrer to 275.62 Barrer, and the gas separation performance of CO2/CH4 in the membrane after thermally rearranged exceeded the upper bound of Robeson in 2008. |
基金项目: |
黑龙江省重点研发计划指导类项目(GZ20210034),黑龙江省领军人才梯队后备带头人资助项目(黑人社函2019(278)号) |
作者简介: |
邹永兰(1997-),女,广东省揭阳市人,硕士研究生,主要研究方向:热重排改性聚酰亚胺气体分离膜。E-mail:zouyonglan1997@163.com |
参考文献: |
[1]Thomas H, Stephen M S, Richard B, et al. Assessing the rapidly-emerging landscape of net zero targets[J]. Climate Policy, 2022, 22(6): 798-816. [2]Monastersky R. Global carbon dioxide levels near worrisome milestone[J]. Nature, 2013, 497(7447): 13-14. [3]和小奇, 朱腾阳, 王淑敏, 等. 含PDMS聚砜膜的制备及其对CO2/CH4分离性能的影响[J]. 化工新型材料, 2018, 46(9): 91-94. [4]张萌, 孙祥军, 罗居杰, 等. CO2与CH4膜分离的发展与现状[J]. 化工新型材料, 2014, 42(5): 26-29. [5]和小奇. 含柔性链段聚砜膜的制备及其在CO2/CH4分离中的应用[D]. 太原: 太原理工大学, 2018. [6]凌凡, 张忠孝, 樊俊杰, 等. 膜分离法、化学吸收法以及联合法分离CO2/CH4试验比较[J]. 动力工程学报, 2015, 35(3): 245-250. [7]马文强, 徐双平, 贾宏葛, 等. 桥接聚甲基硅氧烷/乙基纤维素/ZSM-5三元复合膜的制备及气体分离性能研究[J]. 化工新型材料, 2022, 50(8): 157-161. [8]杨鹏飞. 纤维素在膜科学中的研究进展. [J]. 煤炭与化工, 2009, 32(4): 9-12. [9]张辉,贾宏葛,马立群,等. 乙基纤维素与离子液体共混膜制备及气体分离性能研究[J]. 化工新型材料, 2019, 47(1): 105-107. [10]丁黎明, 张新妙, 王玉杰, 等. 聚酰亚胺膜材料在CO2分离领域的应用研究进展[J]. 石油化工, 2022,51(8):993-1002. [11]祁喜旺, 陈翠仙, 蒋维钧. 聚酰亚胺气体分离膜[J]. 膜科学与技术, 1996, 16(2):7. [12]耿慧彬, 闫博雅, 常娜, 等. 聚酰亚胺气体分离膜的制备与改性研究进展[J]. 高分子材料科学与程, 2022, 38(4): 174-182. [13]刘万兴, 刘秀峥, 杨延斌, 等.对高性能聚酰亚胺材料的研究进展分析[J]. 天津化工, 2022, 36(4): 19-22. [14]佐洪涛. 高透明耐高温聚酰亚胺的分子设计、合成及性能研究[D]. 上海: 东华大学, 2022. [15]赵士君, 贾宏葛, 李俊, 等. 聚酰亚胺膜结构与气体渗透性能[J]. 高分子通报, 2022(5): 27-37. [16]PARK H B, JUNG C H, LEE Y M, et al. Polymers with cavities tuned for fast selective transport of small molecules and ions[J]. Science, 2007, 318(5848): 254~258. [17]DULCE M M, MARIOLA C, JOSÉ G. DE L C, et al. An improved method for preparing very high molecular weight polyimides[J]. Macromolecules, 2009, 42(15): 5892-5894. [18]ADELE B, ENRICO D, YOUNG M L, et al. Engineering evaluation of CO2 separation by membrane gas separation systems[J]. Journal of Membrane Science, 2014, 454:305-315. [19]江雪薇, 董杰, 赵昕, 等. 基于热重排反应聚酰亚胺气体分离膜的制备及性能研究[J]. 功能材料, 2018, 49(4): 4024-4031. [20]都书强, 李静敏, 李巩, 等. 亚胺化途径对聚酰亚胺薄膜性能的影响[J]. 绝缘材料, 2018, 51(6): 12-14,19. [21]KENJI M, PING X. Gas permeation of aromatic polyimides. II. Influence of chemical structure[J]. Journal of Membrane Science, 1993, 81(1): 23-30. [22]Sang H H, Misdan N, Kim S, et al. Thermally rearranged (TR) polybenzoxazole: Effects of diverse imidization routes on physical properties and gas transport behaviors[J]. Macromolecules, 2010,43(18):7657-7667. [23]Liu W F, Xie W. Acete-functional thermally rearranged polyimides based on 2,2-bis(3-amino-4-hydroxy-phenyl) hexafluoropropane(APAF) and various dianhydrides for gas separations[J]. Industrial & Engineering Chemistry Research, 2014, 53(2): 871-879. [24]Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. Journal of Membrane Science, 1991, 62(2): 165-185. [25]Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号