基于模型的纳滤型正渗透过程评估 |
作者:李 卓,李圣哲,刘 鑫,李炜怡 |
单位: 南方科技大学 环境科学与工程学院,深圳 518000 |
关键词: 正渗透;纳滤型分离膜;模型评估;非线性回归 |
DOI号: |
分类号: |
出版年,卷(期):页码: 2023,43(3):123-130 |
摘要: |
纳滤型分离膜的发展为促进正渗透技术在水处理和生物(或有机物)产品分离提纯中的应用提供了新的动力。然而,能否将传统正渗透模型用于评估纳滤型正渗透分离膜及其分离过程尚存疑问。本研究利用层层自组装技术制备纳滤型分离膜,并使用多种多价盐作为汲取溶质实现正渗透过程。同时,本研究基于矢量分析建立适用于不同分离膜朝向的正渗透模型,并通过非线性拟合获得不同汲取溶质的膜内外传递系数和分离膜支撑层的结构参数。分析结果表明,传统正渗透模型在很大程度上适用于纳滤型分离膜过程的评估,能够为新型正渗透过程的工程设计和应用提供理论支撑。 |
Development of forward osmosis (FO) for water treatment and purifying/fractionating bioproducts or organics is gaining impetus from the use of nanofiltration (NF)-like membranes. However, it remains ambiguous whether the classical FO model is applicable to the assessment of NF-like membranes and the associated FO processes. Layer-by-Layer assembly was exploited by this study to fabricate NF-like membranes and thereby implement FO processes with various multivalent salts as the draw solute. Meanwhile, mathematical descriptions for the different membrane orientations were unified by retrieving the classical FO model in terms of vectorized variables; the nonlinear model was fitted to the experimental data in an effort to obtain the mass-transfer coefficients for various draw solutes on the membrane surface or within the membrane structures and the structural parameter characterizing the substrate. The analysis indicates that, to a great extent, the classical FO model can be extended to assessing NF-like FO processes, thereby providing a theoretical tool to develop design heuristics for engineering novel FO processes. |
基金项目: |
广东省科技项目(2017ZT07Z479);国家自然科学基金项目(21878140);深圳市科技项目(JCYJ20190809172011680) |
作者简介: |
李卓(1996-),男,黑龙江双鸭山人, 哈尔滨工业大学和南方科技大学联合培养硕士,研究方向为膜分离技术,E-mail:11749138@mail.sustech.edu.cn |
参考文献: |
[1] McCutcheon J R. Avoiding the hype in developing commercially viable desalination technologies[J]. Joule, 2019, 3(5):1168-1171. [2] Shaffer D L, Werber J R, Jaramillo H, et al. Forward osmosis: Where are we now?[J]. Desalination, 2015, 356:271-284. [3] Fang W X, Wang R, Chou S R, et al. Composite forward osmosis hollow fiber membranes: Integration of RO- and NF-like selective layers to enhance membrane properties of anti-scaling and anti-internal concentration polarization[J]. Journal of Membrane Science, 2012, 394:140-150. [4] Xiao D Z, Tang C Y Y, Zhang J S, et al. Modeling salt accumulation in osmotic membrane bioreactors: Implications for FO membrane selection and system operation[J]. Journal of Membrane Science, 2011, 366(1/2):314-324. [5] 胡群辉, 邹昊, 姜莹, et al. 正渗透膜分离关键技术及其应用进展[J]. 膜科学与技术, 2014, 34(5):109-115. [6] 龙中亮, NGO H H, 张新波, et al. 正渗透技术应用于污废水处理的研究进展[J]. 膜科学与技术, 2022, 42(1):192-200. [7] 朱卫军, 王新华, 李秀芬, et al. 正渗透膜生物反应器与反渗透耦合系统的运行性能研究[J]. 膜科学与技术, 2018, 38(3):104-109. [8] 方文哲, 沈俏会, 陈丽萍, et al. 正渗透金属无机盐驱动液对藻水分离的影响[J]. 膜科学与技术, 2015, 35(6):81-86. [9] Hwang S T. Nonequilibrium thermodynamics of membrane transport[J]. AIChE Journal, 2004, 50(4):862-870. [10] Spiegler K S, Kedem O. Citation classic - thermodynamics of hyperfiltration (reverse-osmosis) - criteria for efficient membranes[J]. Current Contents/Engineering Technology & Applied Sciences, 1983, (5):16-16. [11] Wang K Y, Chung T S, Qin J J. Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process[J]. Journal of Membrane Science, 2007, 300(1/2):6-12. [12] Saren Q, Qiu C Q, Tang C Y Y. Synthesis and characterization of novel forward osmosis membranes based on layer-by-layer assembly[J]. Environmental Science & Technology, 2011, 45(12):5201-5208. [13] Tang C Y Y, She Q H, Lay W C L, et al. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration[J]. Journal of Membrane Science, 2010, 354(1/2):123-133. [14] Li W Y, Gao Y B, Tang C Y Y. Network modeling for studying the effect of support structure on internal concentration polarization during forward osmosis: Model development and theoretical analysis with FEM[J]. Journal of Membrane Science, 2011, 379(1/2):307-321. [15] Xiao D Z, Li W Y, Chou S R, et al. A modeling investigation on optimizing the design of forward osmosis hollow fiber modules[J]. Journal of Membrane Science, 2012, 392:76-87. [16] Kim B, Gwak G, Hong S. Review on methodology for determining forward osmosis (FO) membrane characteristics: Water permeability (A), solute permeability (B), and structural parameter (S)[J]. Desalination, 2017, 422:5-16. [17] 胡乐乐, 王铎, 汪锰. 基膜结构对聚酰胺TFC膜正渗透性能的影响[J]. 膜科学与技术, 2017, 37(2):19-25. [18] Liu X, Chen G, Tu G Q, et al. Membrane fouling by clay suspensions during NF-like forward osmosis: Characterization via optical coherence tomography[J]. Journal of Membrane Science, 2020, 602. [19] Tiraferri A, Yip N Y, Straub A P, et al. A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes[J]. Journal of Membrane Science, 2013, 444:523-538. [20] Liu X, Li Z, Zou Z J, et al. Whey recovery using nanofiltration-like forward osmosis: Optical coherence tomography based approach to understanding fouling behavior[J]. ACS ES&T Water, 2022. [21] Ma J J, Xiao T H, Long N B, et al. The role of polyvinyl butyral additive in forming desirable pore structure for thin film composite forward osmosis membrane[J]. Separation and Purification Technology, 2020, 242. [22] Spiess A-N, Neumeyer N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach[J]. BMC pharmacology, 2010, 10:6. [23] Achilli A, Cath T Y, Childress A E. Power generation with pressure retarded osmosis: An experimental and theoretical investigation[J]. Journal of Membrane Science, 2009, 343(1/2):42-52. [24] Schock G, Miquel A. Mass-transfer and pressure loss in spiral wound modules[J]. Desalination, 1987, 64:339-352. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号