超支化共聚聚酰亚胺膜制备及其CO2/CH4气体分离性能研究
作者:衣华磊,郭欣,杨涛,高鹏,段翠佳,骆鑫雨
单位: 1中海油研究总院有限责任公司,北京市 100028;2中海油天津化工研究设计院有限公司,天津市 300130;3大连理工大学,大连市 116081
关键词: 超支化聚酰亚胺,气体分离,四胺,热酰亚胺化
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2023,43(4):54-59

摘要:
 以4,4-六氟异丙基邻苯二甲酸酐(6FDA)和4,4’-二氨基二苯醚(ODA)为基体,通过加入不同比例的N,N,N’,N’-四(对氨基苯基)对苯二胺(NTPDA)四胺单体,采用热酰亚胺化法制备一系列超支化共聚聚酰亚胺膜(6FDA- ODA- NTPDA),通过红外光谱(FT-IR)、热失重分析(TGA)、差示扫描量热法(DSC)、X-射线衍射(XRD)对膜结构进行了表征,并测试了薄膜对CO2/CH4气体渗透性能和分离性能。结果表明:当四胺摩尔分数为5‰时,膜的CO2渗透系数较纯膜(6FDA- ODA)提升117.32%,CO2/CH4选择性较纯膜(6FDA- ODA)提升78.5%。
  Adding different proportions of N,N,N',N'-tetra (p-aminophenyl) p-phenylenediamine (NTPDA) tetramine monomers into the 4, 4-hexafluoro-isopropyl phthalic anhydride (6FDA) and 4,4'-diamino-diphenyl ether (ODA) polyimide (6FDA-ODA), a series of hyperbranched copolyimide membranes (6FDA-ODA-NTPDA) were prepared by thermal imimide method. The structure , thermal stability, Tg and crystallinity of the membranes were characterized by infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) respectively. The permeability and separation properties of the membranes for CO2/CH4 gas were tested. The results showed that compared with the pure membrane (6FDA-ODA), when the tetramine mole fraction was 5‰, the CO2 permeability coefficient was increased by 117.32%  and the CO2/CH4 selectivity was increased by 78.5% .

基金项目:

作者简介:
衣华磊(1982-),男,高级工程师,2007年毕业于中国石油大学 (华东) ,现主要从事海上平台的设计与研究工作,E-mail:yihl@cnooc.com.cn

参考文献:
 [1] Song N, Ma T, Wang T, et al. Microporous polyimides with high surface area and CO2 selectivity fabricated from cross-linkable linear polyimides[J]. Journal of Colloid and Interface Science, 2020, 573: 328-335.
[2] Castro-Muñoz R, Martin-Gil V, Ahmad MZ, et al. Matrimid® 5218 in preparation of membranes for gas separation: Current state-of-the-art[J]. Chemical Engineering Communications, 2017, 205(2):161-196.
[3] Hossain I, Nam SY, Rizzuto C, et al. PIM-polyimide multiblock copolymer-based membranes with enhanced CO2 separation performances[J]. Journal of Membrane Science, 2019, 574: 270-281.
[4] Ahmad MZ, Pelletier H, Martin-Gil V, et al. Chemical Crosslinking of 6FDA-ODA and 6FDA-ODA:DABA for Improved CO2/CH4 Separation[J]. Membranes, 2018, 8(3),67.
[5] 黄旭,邵路,孟令辉,等. 聚酰亚胺基气体分离膜的改性方法及其最新进展[J]. 膜科学与技术, 2009, 29(1): 101-108.
[6] Atalay-Oral C, Tatlier M. Effects of structural properties of fillers on performances of Matrimid® 5218 mixed matrix membranes[J]. Separation and Purification Technology, 2020, 236,116277.
[7] Deng G, Luo J, Liu S, et al. Molecular design and characterization of new polyimides based on binaphthyl-ether diamines for gas separation[J]. Separation and Purification Technology, 2020, 235,116218.
[8] Zhang Q, Li S, Wang C, et al. Carbon nanotube-based mixed-matrix membranes with supramolecularly engineered interface for enhanced gas separation performance[J]. Journal of Membrane Science, 2020, 598,117794.
[9] Sysel P, Patrova A, Lanc M, et al. Poly(imide-siloxane)s based on hyperbranched polyimides[J]. e-Polymers,  2018, 18(2): 105-110.
[10] Fang JF, Kita H, Okamoto K-i. Hyperbranched Polyimides for Gas Separation Applications-Synthesis and Characterization[J]. Macromolecules, 2000, 33: 4639-4646.
[11] Suzuki T, Yamada Y. Synthesis and gas transport properties of novel hyperbranched polyimide-silica hybrid membranes[J]. Journal of Applied Polymer Science, 2013, 127(1): 316-322.
[12] Deng G, Luo J, Liu S, et al. Low-temperature synthesis and gas transport properties of novel contorted hyperbranched polyimides containing binaphthyl structures[J]. Separation and Purification Technology, 2020, 248: 117088.
[13] Yi L, Wu X, Shu C, et al. Synthesis and characterization of hyperbranched polyimides from a novel B’B2-type triamine with tert-butyl side group[J]. Polymer,  2017, 133: 171-183.
[14] Deng G, Wang Y, Luo J, et al. Synthesis and gas transport properties of hyperbranched network polyimides derived from Tris(4-aminophenyl)benzene[J]. Polymer, 2020, 203,122776.
[15] Othman MBH, Akil HM, Osman H, et al. Synthesis, characterisation and thermal properties of hyperbranched polyimide derived from melamine via emulsion polymerisation[J]. Journal of Thermal Analysis and Calorimetry, 2015, 120(3): 1785-1798.
[16] Sysel P, Sindelar V, Kubonova M, et al. Membranes based on modified polyimides for gas and organic vapour separations[J]. Desalination, 2009, 236(1-3): 46-50.
[17] Shin YS, Chae B, Jung YM, et al. Thermal imidization behaviors of 6FDA-ODA poly(amic acid) containing curing accelerators by in-situ FTIR spectroscopy[J]. Vibrational Spectroscopy, 2020, 106,103007.
[18] Yamanaka K, Jikei M, Kakimoto M-a. Preparation and Properties of Hyperbranched Aromatic Polyimides via Polyamic Acid Methyl Ester Precursors[J]. Macromolecules, 2000, 33:6937-6944.
[19] Ahmadizadegan H. Surface modification of TiO2 nanoparticles with biodegradable nanocellolose and synthesis of novel polyimide/cellulose/TiO2 membrane[J]. Jouranal of Colloid Interface Science,  2017, 491: 390-400.
[20] Yates CR, Hayes W. Synthesis and applications of hyperbranched polymers[J]. European Polymer Journal, 2004, 40(7): 1257-1281.
[21] Chua ML, Xiao YC, Chung T-S. Effects of thermally labile saccharide units on the gas separation performance of highly permeable polyimide membranes[J]. Journal of Membrane Science, 2012, 415: 375-382.
[22] Qiu W, Chen C-C, Kincer MR, et al. Thermal analysis and its application in evaluation of fluorinated polyimide membranes for gas separation[J]. Polymer, 2011, 52(18): 4073-4082.
[23] Wang S, Ma S, He H, et al. Aromatic polyimides containing pyridine and spirocyclic units: Preparation, thermal and gas separation properties[J]. Polymer, 2019, 168: 199-208.
[24] Lee BM, Kim DJ, Nam SY. Effect of Bulky and Hydroxyl Groups on Gas Separation Performance of Polyimide Membranes[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(3): 2351-2355.
[25] Pérez-Francisco JM, Santiago-García JL, Loría-Bastarrachea MI, et al. CMS membranes from PBI/PI blends: Temperature effect on gas transport and separation performance[J]. Journal of Membrane Science,  2020, 597,117703.
[26] Yang T, Pang HC, Chen Z, et al. Synthesis and enhanced CO2/CH4 selectivity of hyperbranched copolyimide membranes[J]. High Performance Polymers, 2021, 33(6): 675-684
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号