超支化共聚聚酰亚胺膜制备及其CO2/CH4气体分离性能研究 |
作者:衣华磊,郭欣,杨涛,高鹏,段翠佳,骆鑫雨 |
单位: 1中海油研究总院有限责任公司,北京市 100028;2中海油天津化工研究设计院有限公司,天津市 300130;3大连理工大学,大连市 116081 |
关键词: 超支化聚酰亚胺,气体分离,四胺,热酰亚胺化 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2023,43(4):54-59 |
摘要: |
以4,4-六氟异丙基邻苯二甲酸酐(6FDA)和4,4’-二氨基二苯醚(ODA)为基体,通过加入不同比例的N,N,N’,N’-四(对氨基苯基)对苯二胺(NTPDA)四胺单体,采用热酰亚胺化法制备一系列超支化共聚聚酰亚胺膜(6FDA- ODA- NTPDA),通过红外光谱(FT-IR)、热失重分析(TGA)、差示扫描量热法(DSC)、X-射线衍射(XRD)对膜结构进行了表征,并测试了薄膜对CO2/CH4气体渗透性能和分离性能。结果表明:当四胺摩尔分数为5‰时,膜的CO2渗透系数较纯膜(6FDA- ODA)提升117.32%,CO2/CH4选择性较纯膜(6FDA- ODA)提升78.5%。 |
Adding different proportions of N,N,N',N'-tetra (p-aminophenyl) p-phenylenediamine (NTPDA) tetramine monomers into the 4, 4-hexafluoro-isopropyl phthalic anhydride (6FDA) and 4,4'-diamino-diphenyl ether (ODA) polyimide (6FDA-ODA), a series of hyperbranched copolyimide membranes (6FDA-ODA-NTPDA) were prepared by thermal imimide method. The structure , thermal stability, Tg and crystallinity of the membranes were characterized by infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) respectively. The permeability and separation properties of the membranes for CO2/CH4 gas were tested. The results showed that compared with the pure membrane (6FDA-ODA), when the tetramine mole fraction was 5‰, the CO2 permeability coefficient was increased by 117.32% and the CO2/CH4 selectivity was increased by 78.5% . |
基金项目: |
作者简介: |
衣华磊(1982-),男,高级工程师,2007年毕业于中国石油大学 (华东) ,现主要从事海上平台的设计与研究工作,E-mail:yihl@cnooc.com.cn |
参考文献: |
[1] Song N, Ma T, Wang T, et al. Microporous polyimides with high surface area and CO2 selectivity fabricated from cross-linkable linear polyimides[J]. Journal of Colloid and Interface Science, 2020, 573: 328-335. [2] Castro-Muñoz R, Martin-Gil V, Ahmad MZ, et al. Matrimid® 5218 in preparation of membranes for gas separation: Current state-of-the-art[J]. Chemical Engineering Communications, 2017, 205(2):161-196. [3] Hossain I, Nam SY, Rizzuto C, et al. PIM-polyimide multiblock copolymer-based membranes with enhanced CO2 separation performances[J]. Journal of Membrane Science, 2019, 574: 270-281. [4] Ahmad MZ, Pelletier H, Martin-Gil V, et al. Chemical Crosslinking of 6FDA-ODA and 6FDA-ODA:DABA for Improved CO2/CH4 Separation[J]. Membranes, 2018, 8(3),67. [5] 黄旭,邵路,孟令辉,等. 聚酰亚胺基气体分离膜的改性方法及其最新进展[J]. 膜科学与技术, 2009, 29(1): 101-108. [6] Atalay-Oral C, Tatlier M. Effects of structural properties of fillers on performances of Matrimid® 5218 mixed matrix membranes[J]. Separation and Purification Technology, 2020, 236,116277. [7] Deng G, Luo J, Liu S, et al. Molecular design and characterization of new polyimides based on binaphthyl-ether diamines for gas separation[J]. Separation and Purification Technology, 2020, 235,116218. [8] Zhang Q, Li S, Wang C, et al. Carbon nanotube-based mixed-matrix membranes with supramolecularly engineered interface for enhanced gas separation performance[J]. Journal of Membrane Science, 2020, 598,117794. [9] Sysel P, Patrova A, Lanc M, et al. Poly(imide-siloxane)s based on hyperbranched polyimides[J]. e-Polymers, 2018, 18(2): 105-110. [10] Fang JF, Kita H, Okamoto K-i. Hyperbranched Polyimides for Gas Separation Applications-Synthesis and Characterization[J]. Macromolecules, 2000, 33: 4639-4646. [11] Suzuki T, Yamada Y. Synthesis and gas transport properties of novel hyperbranched polyimide-silica hybrid membranes[J]. Journal of Applied Polymer Science, 2013, 127(1): 316-322. [12] Deng G, Luo J, Liu S, et al. Low-temperature synthesis and gas transport properties of novel contorted hyperbranched polyimides containing binaphthyl structures[J]. Separation and Purification Technology, 2020, 248: 117088. [13] Yi L, Wu X, Shu C, et al. Synthesis and characterization of hyperbranched polyimides from a novel B’B2-type triamine with tert-butyl side group[J]. Polymer, 2017, 133: 171-183. [14] Deng G, Wang Y, Luo J, et al. Synthesis and gas transport properties of hyperbranched network polyimides derived from Tris(4-aminophenyl)benzene[J]. Polymer, 2020, 203,122776. [15] Othman MBH, Akil HM, Osman H, et al. Synthesis, characterisation and thermal properties of hyperbranched polyimide derived from melamine via emulsion polymerisation[J]. Journal of Thermal Analysis and Calorimetry, 2015, 120(3): 1785-1798. [16] Sysel P, Sindelar V, Kubonova M, et al. Membranes based on modified polyimides for gas and organic vapour separations[J]. Desalination, 2009, 236(1-3): 46-50. [17] Shin YS, Chae B, Jung YM, et al. Thermal imidization behaviors of 6FDA-ODA poly(amic acid) containing curing accelerators by in-situ FTIR spectroscopy[J]. Vibrational Spectroscopy, 2020, 106,103007. [18] Yamanaka K, Jikei M, Kakimoto M-a. Preparation and Properties of Hyperbranched Aromatic Polyimides via Polyamic Acid Methyl Ester Precursors[J]. Macromolecules, 2000, 33:6937-6944. [19] Ahmadizadegan H. Surface modification of TiO2 nanoparticles with biodegradable nanocellolose and synthesis of novel polyimide/cellulose/TiO2 membrane[J]. Jouranal of Colloid Interface Science, 2017, 491: 390-400. [20] Yates CR, Hayes W. Synthesis and applications of hyperbranched polymers[J]. European Polymer Journal, 2004, 40(7): 1257-1281. [21] Chua ML, Xiao YC, Chung T-S. Effects of thermally labile saccharide units on the gas separation performance of highly permeable polyimide membranes[J]. Journal of Membrane Science, 2012, 415: 375-382. [22] Qiu W, Chen C-C, Kincer MR, et al. Thermal analysis and its application in evaluation of fluorinated polyimide membranes for gas separation[J]. Polymer, 2011, 52(18): 4073-4082. [23] Wang S, Ma S, He H, et al. Aromatic polyimides containing pyridine and spirocyclic units: Preparation, thermal and gas separation properties[J]. Polymer, 2019, 168: 199-208. [24] Lee BM, Kim DJ, Nam SY. Effect of Bulky and Hydroxyl Groups on Gas Separation Performance of Polyimide Membranes[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(3): 2351-2355. [25] Pérez-Francisco JM, Santiago-García JL, Loría-Bastarrachea MI, et al. CMS membranes from PBI/PI blends: Temperature effect on gas transport and separation performance[J]. Journal of Membrane Science, 2020, 597,117703. [26] Yang T, Pang HC, Chen Z, et al. Synthesis and enhanced CO2/CH4 selectivity of hyperbranched copolyimide membranes[J]. High Performance Polymers, 2021, 33(6): 675-684 |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号