一种耐氯性聚酰胺纳滤膜制备及耐氯性评价
作者:侯琴, 衣刚, 卢彦斌,孙广东,李锁定,任凤伟
单位: 1.北京碧水源膜科技有限公司,北京市 101400 中国; 2.北京碧水源分离膜科技有限公司,北京市 101400 中国
关键词: 纳滤膜;聚酰胺;耐氯性;自来水;余氯
DOI号:
分类号: TQ028;X799
出版年,卷(期):页码: 2023,43(4):69-74

摘要:
 针对传统聚哌嗪酰胺纳滤膜在低浓度余氯中暴露后脱盐性能下降的问题,本文采用2,3-环氧丙基三甲基氯化铵(GTA)对膜脱盐层中的哌嗪端胺基进行后处理修饰,以三乙醇胺作为反应催化剂和溶剂活化剂,制备了一种通量高的耐氯性纳滤膜。利用FTIR、SEM对改性纳滤膜结构进行了分析,考察了GTA和三乙醇胺的浓度、后处理时间对纳滤膜分离性能的影响,确定了最佳工艺条件。实验结果表明,优化复合膜通量由54.1 LMH提高到62.1 LMH,氯化钠脱盐率保持在60%左右,并且在含有余氯的自来水条件下测试性能稳定。暴露余氯后的钙离子脱盐率稳定,展现出良好的耐氯荷电稳定性。
 Traditional polypiperazine-amide nanofiltration membrane suffered from deterioration after exposure to low concentration of residual chlorine. To tackle this problem, a novel chloride-resistant nanofiltration membrane with high flux was prepared by using 2, 3-epoxy-propyl trimethyl ammonium chloride (GTA) as modifier to graft amine group in the desalination layer and using triethanolamine as reaction catalyst and solvent activator. The modified nanofiltration membranes were analyzed by FTIR and SEM. Moreover, the effects of post-treatment time and concentration of GTA/TEOA on the separation performance of modified nanofiltration membranes were investigated to determine the optimum process conditions. Results showed that the flux of modified nanofiltration membrane increased from 54.1 LMH to 62.1 LMH and the rejection rate of sodium chloride remained at 60%. Besides, the modified nanofiltration membrane was stable during filtration of real tap water containing residual chlorine. The calcium ions rejection rate remained the same before and after the exposure to residual chlorine, revealing good chlorine resistance of the modified nanofiltration membrane on charges.

基金项目:

作者简介:
侯琴(1988-),女,陕西宝鸡人,硕士,反渗透纳滤膜的开发与应用研究;电子邮箱:bsy_houqin@126.com

参考文献:
 [1] 毕飞, 陈欢林, 高从堦. 纳滤膜去除饮用水中微量有机物的研究进展[J]. 现代化工, 2003,19(4):3.
[2] Liu S, Wu C, Hung W S, et al. One-step constructed ultrathin Janus polyamide nanofilm with opposite charges for highly efficient nanofiltration[J]. Journal of Materials Chemistry A, 2017:10-1039.
 [3] 黄晓平, 钟笑颜. 二氧化氯消毒饮用水的"余氯"控制实践[J]. 中国给水排水, 2003,19(4):3.
 [4] 张家恒, 刘逸, 李俊俊, 等. 1种复合纳滤膜的性能及其耐氯性研究[J]. 水处理技术, 2018,44(12):6.
 [5] 黄嘉臣, 罗建泉, 郭世伟, 等. 化学清洗对聚酰胺纳滤膜的影响机制研究进展[J]. 膜科学与技术, 2020,40(1):188-195.
 [6] 刘四华. 聚哌嗪酰胺纳滤膜微结构原位调控及氯化机理研究[D]. 天津工业大学, 2020.
 [7] Liu S, Wu C, Hou X, et al. Understanding the chlorination mechanism and the chlorine-induced separation performance evolution of polypiperazine-amide nanofiltration membrane[J]. Journal of Membrane Science, 2019,573:36-45.
 [8] Zhu X, Cheng X, Xing J, et al. In-situ covalently bonded supramolecular-based protective layer for improving chlorine resistance of thin-film composite nanofiltration membranes[J]. Desalination, 2020,474:114197.
 [9] 嵇华忠, 韩家凯, 钱璟俐, 等. 表面接枝TAPI改善聚酰胺纳滤膜的耐氯性能[J]. 膜科学与技术.
 [10] 观姗姗, 张守海, 王晓丽, 等. 耐氯性能优良的磺化杂萘联苯共聚醚砜复合纳滤膜[J]. 膜科学与技术, 2013,33(4):17-22.
[11] Kwon Y, Hong S, Choi H, et al. Surface modification of a polyamide reverse osmosis membrane for chlorine resistance improvement[J]. Journal of Membrane Science, 2012,415:192-198.
[12] Zhan Z M, Tang Y J, Zhu K K, et al. Coupling heat curing and surface modification for the fabrication of high permselectivity polyamide nanofiltration membranes[J]. Journal of Membrane Science, 2021,623:119073.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号